To assess whether convergence warnings render the results invalid, or on the contrary, the results can be deemed valid in spite of the warnings, Bates et al. (2023) suggest refitting models affected by convergence warnings with a variety of optimizers. The authors argue that, if the different optimizers produce practically-equivalent results, the results are valid. The allFit function from the ‘lme4’ package allows the refitting of models using a number of optimizers.
When a model has struggled to find enough information in the data to account for every predictor---especially for every random effect---, convergence warnings appear (Brauer & Curtin, 2018; Singmann & Kellen, 2019). In this article, I review the issue of convergence before presenting a new plotting function in R that facilitates the visualisation of the fixed effects fitted by different optimization algorithms (also dubbed optimizers).
The need for covariates—or nuisance variables—in statistical analyses is twofold. The first reason is purely statistical and the second reason is academic.
First, the use of covariates is often necessary when the variable(s) of interest in a study may be connected to, and affected by, some satellite variables (Bottini et al., 2022; Elze et al., 2017; Sassenhagen & Alday, 2016). This complex scenario is the most common one due to the multivariate, dynamic, interactive nature of the real world.
I would like to ask for advice regarding some plots that were created using brms::mcmc_plot(), and cannot be opened in R now. The plots were created last year using brms 2.17.0, and were saved in RDS objects. The problem I have is that I cannot open the plots in R now because I get an error related to a missing function. I would be very grateful if someone could please advise me if they can think of a possible reason or solution.
Here I share the format applied to tables presenting the results of Bayesian models in Bernabeu (2022). The sample table presents a mixed-effects model that was fitted using the R package 'brms' (Bürkner et al., 2022).
Here I share the format applied to tables presenting the results of frequentist models in Bernabeu (2022). The sample table presents a mixed-effects model that was fitted using the R package 'lmerTest' (Kuznetsova et al., 2022).
Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. One of these functions is alias_interaction_plot, which allows the plotting of interactions between a continuous variable and a categorical variable.
Whereas the direction of main effects can be interpreted from the sign of the estimate, the interpretation of interaction effects often requires plots. This task is facilitated by the R package sjPlot (Lüdecke, 2022). In Bernabeu (2022), the sjPlot function called plot_model served as the basis for the creation of some custom functions. Two of these functions are deciles_interaction_plot and sextiles_interaction_plot. These functions allow the plotting of interactions between two continuous variables.
Frequentist and Bayesian statistics are sometimes regarded as fundamentally different philosophies. Indeed, can both qualify as philosophies or is one of them just a pointless ritual? Is frequentist statistics only about $p$ values? Are frequentist estimates diametrically opposed to Bayesian posterior distributions? Are confidence intervals and credible intervals irreconcilable? Will R crash if lmerTest and brms are simultaneously loaded?
The first study (Bernabeu et al., 2021) will merge existing datasets (Lynott et al., 2020; Pexman et al., 2017; Pexman & Yap, 2018; Wingfield & Connell, 2019). The second study will collect novel data to investigate questions such as the unique roles of vocabulary size, sensorimotor experience and attentional control.