Mixed-effects models in R, and a new tool for data simulation

In this talk, I will look over the rationale for LMEMs, and demonstrate how to fit them in R (Brauer & Curtin, 2018; Luke, 2017). Challenges will also be covered. For instance, when using the widely-accepted 'maximal' approach, based on fitting all possible random effects for each fixed effect, models sometimes fail to find a solution, or 'convergence'. Advice for the problem of nonconvergence will be demonstrated, based on the progressive lightening of the random effects structure (Singman & Kellen, 2017; for an alternative approach, especially with small samples, see Matuschek et al., 2017). At the end, on a different note, I will present a web application that facilitates data simulation for research and teaching (Bernabeu & Lynott, 2020).

Naive principal component analysis in R

Principal Component Analysis (PCA) is a technique used to find the core components that underlie different variables. It comes in very useful whenever doubts arise about the true origin of three or more variables. There are two main methods for performing a PCA: naive or less naive. In the naive method, you first check some conditions in your data which will determine the essentials of the analysis. In the less-naive method, you set those yourself based on whatever prior information or purposes you had. The 'naive' approach is characterized by a first stage that checks whether the PCA should actually be performed with your current variables, or if some should be removed. The variables that are accepted are taken to a second stage which identifies the number of principal components that seem to underlie your set of variables.

At Greg, 8 am

The single dependent variable, RT, was accompanied by other variables which could be analyzed as independent variables. These included Group, Trial Number, and a within-subjects Condition. What had to be done first off, in order to take the usual table? The trials!