data visualisation

Why can't we be friends? Plotting frequentist (lmerTest) and Bayesian (brms) mixed-effects models

Frequentist and Bayesian statistics are sometimes regarded as fundamentally different philosophies. Indeed, can both qualify as philosophies or is one of them just a pointless ritual? Is frequentist statistics only about $p$ values? Are frequentist estimates diametrically opposed to Bayesian posterior distributions? Are confidence intervals and credible intervals irreconcilable? Will R crash if lmerTest and brms are simultaneously loaded?

A new function to plot convergence diagnostics from lme4::allFit()

When a model has struggled to find enough information in the data to account for every predictor---especially for every random effect---, convergence warnings appear (Brauer & Curtin, 2018; Singmann & Kellen, 2019). In this article, I review the issue of convergence before presenting a new plotting function in R that facilitates the visualisation of the fixed effects fitted by different optimization algorithms (also dubbed optimizers).

Data is present: Workshops and datathons

This project offers free activities to learn and practise reproducible data presentation. Pablo Bernabeu organises these events in the context of a Software Sustainability Institute Fellowship. Programming languages such as R and Python offer free, powerful resources for data processing, visualisation and analysis. Experience in these programs is highly valued in data-intensive disciplines. Original data has become a public good in many research fields thanks to cultural and technological advances. On the internet, we can find innumerable data sets from sources such as scientific journals and repositories (e.g., OSF), local and national governments, non-governmental organisations (e.g., data.world), etc. Activities comprise free workshops and datathons.