Unlike children acquiring their first language (L1), L2/Ln learners can draw on existing grammatical knowledge to ease the task, at least for those properties where the grammars align. This means that, in addition to statistical learning, there might …
The acquisition of a third language (L3) often involves the transfer of morphosyntactic structures from the first language and/or the second language to the developing L3 grammar, allowing the recycling of previously acquired knowledge (Rothman et …
Electroencephalography (EEG) has become a cornerstone for understanding the intricate workings of the human brain in the field of neuroscience. However, EEG software and hardware come with their own set of constraints, particularly in the management of markers, also known as triggers. This article aims to shed light on these limitations and future prospects of marker management in EEG studies, while also introducing R functions that can help deal with vmrk files from BrainVision.
Electroencephalographic (EEG) signals are often contaminated by muscle artifacts such as blinks, jaw clenching and (of course) yawns, which generate electrical activity that can obscure the brain signals of interest. These artifacts typically manifest as large, abrupt changes in the EEG signal, complicating data interpretation and analysis. To mitigate these issues, participants can be instructed during the preparatory phase of the session to minimize blinking and to keep their facial muscles relaxed. Additionally, researchers can emphasize the importance of staying still and provide practice sessions to help participants become aware of their movements, thereby reducing the likelihood of muscle artifacts affecting the EEG recordings.
The OpenSesame user base is skyrocketing but—of course—remains small in comparison to many other user bases that we are used to. Therefore, when developing an experiment in OpenSesame, there are still many opportunities to break the mould. When you need to do something beyond the standard operating procedure, it may take longer to find suitable resources than it takes when a more widespread tool is used. So, why would you still want to use OpenSesame?
Mental simulation theories of language comprehension propose that people automatically create mental representations of objects mentioned in sentences. Mental representation is often measured with the sentence-picture verification task, wherein …
Liu et al. (2018) present a study that implements the conceptual modality switch (CMS) paradigm, which has been used to investigate the modality-specific nature of conceptual representations (Pecher et al., 2003). Liu et al.‘s experiment uses event-related potentials (ERPs; similarly, see Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011, 2013). In the design of the switch conditions, the experiment implements a corpus analysis to distinguish between purely-embodied modality switches and switches that are more liable to linguistic bootstrapping (also see Bernabeu et al.
Event-related potentials (ERPs) offer a unique insight in the study of human cognition. Let's look at their reason-to-be for the purposes of research, and how they are defined and processed. Most of this content is based on my master's thesis, which I could fortunately conduct at the Max Planck Institute for Psycholinguistics (see thesis or conference paper).
Electroencephalography The brain produces electrical activity all the time, which can be measured via electrodes on the scalp—a method known as electroencephalography (EEG).
We tested whether conceptual processing is modality-specific by tracking the time course of the Conceptual Modality Switch effect. Forty-six participants verified the relation between property words and concept words. The conceptual modality of …
The engagement of sensory brain regions during word recognition is widely documented, yet its precise relevance is less clear. It would constitute perceptual simulation only if it has a functional role in conceptual processing. We investigated this …
Research has extensively investigated whether conceptual processing is modality-specific—that is, whether meaning is processed to a large extent on the basis of perceptual and motor affordances (Barsalou, 2016). This possibility challenges long-established theories. It suggests a strong link between physical experience and language which is not borne out of the paradigmatic arbitrariness of words (see Lockwood, Dingemanse, & Hagoort, 2016). Modality-specificity also clashes with models of language that have no link to sensory and motor systems (Barsalou, 2016).
We tested whether conceptual processing is modality-specific by tracking the time course of the Conceptual Modality Switch effect. Forty-six participants verified the relation between property words and concept words. The conceptual modality of consecutive trials was manipulated in order to produce an Auditory-to-visual switch condition, a Haptic-to-visual switch condition, and a Visual-to-visual, no-switch condition. Event-Related Potentials (ERPs) were time-locked to the onset of the first word (property) in the target trials so as to measure the effect online and to avoid a within-trial confound. A switch effect was found, characterized by more negative ERP amplitudes for modality switches than no-switches. It proved significant in four typical time windows from 160 to 750 milliseconds post word onset, with greater strength in the Slow group, in posterior brain regions, and in the N400 window. The earliest switch effect was located in the language brain region, whereas later it was more prominent in the visual region. In the N400 and Late Positive windows, the Quick group presented the effect especially in the language region, whereas the Slow had it rather in the visual region. These results suggest that contextual factors such as time resources modulate the engagement of linguistic and embodied systems in conceptual processing.
Most of the recordings are perfectly fine, but a few present a big error. Out of 64 original electrodes, only two appear. These are the right mastoid (RM) and the left eye sensor (LEOG). Both are bipolar electrodes. RM is to be re-referenced to the online reference electrode, while LEOG is to be re-referenced to the right eye electrode.
Traditionally, the second word presented (whether noun or adjective) has been the point of measure, both for RTs and ERPs. Yet, could it be better to measure at the first word?