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Abstract

Research has suggested that conceptual processing depends on both language-based

and sensorimotor information. In this thesis, I investigate the nature of these systems and

their interplay at three levels of the experimental structure—namely, individuals, words and

tasks. In Study 1, I contributed to a multi-lab replication of the object orientation effect,

which has been used to test sensorimotor simulation. The effect did not appear in any of

the 18 languages examined, and it was not influenced by individual differences in mental

rotation. Next, in Study 2, we drew on three existing data sets that implemented semantic

priming, semantic decision and lexical decision. We extended these data sets with measures

of language-based and vision-based information, and analysed their interactions with

participants’ vocabulary size and gender, and with presentation speed. The analysis had a

conservative structure of fixed and random effects. First, we found that language-based

information was more important than vision-based information. Second, in the semantic

priming study—whose task required distinguishing between words and nonwords—, both

language-based and vision-based information were more influential when words were

presented faster. Third, a ‘task-relevance advantage’ was identified in higher-vocabulary

participants. Specifically, in lexical decision, higher-vocabulary participants were more

sensitive to language-based information than lower-vocabulary participants, whereas in

semantic decision, higher-vocabulary participants were more sensitive to word concreteness.

Fourth, we demonstrated the influence of the analytical method on the results. Last, we

estimated the sample size required to investigate various effects. We found that 300

participants were sufficient to examine the effect of language-based information in words,

whereas more than 1,000 participants were necessary to examine the effect of vision-based

information and the interactions of both former variables with vocabulary size, gender and

presentation speed. This power analysis suggests that larger sample sizes are necessary to

investigate perceptual simulation and individual differences in conceptual processing.
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Chapter 1: Introduction

The process by which people understand the meaning of words is known as

conceptual (or semantic) processing. The scientific study of this ability since the 1960s was

first characterised by categorical taxonomies. That is, concepts were described using lists of

features containing some properties that were deemed necessary and other properties

deemed sufficient (Fillmore, 1975). For instance, necessary features of a dog might include

having a tail, paws, barking, etc. In turn, being identified as a dog was a sufficient

condition for being a mammal. Although useful, this ‘checklist’ approach was not devoid of

shortcomings. For instance, a dog in real life can actually lack any of the aforementioned

‘necessary’ conditions. Furthermore, some of the necessary features are more paradigmatic

than others for a given category. For instance, barking is more paradigmatic of a dog than

having ears. In addition, the some sufficient conditions are more paradigmatic than others.

For instance, a dog is more paradigmatic of the mammal category than a platypus. These

shortcomings were addressed by the Prototype Theory, which posited that concepts were

organised around core concepts, or prototypes. Thus, the Prototype Theory accounted for

the prototypical position of barking among the necessary features of dogs, and for the less

prominent position of ears among the same features. Similarly, Prototype Theory helped

explain the prototypical position of dogs in the category of mammals (Rosch, 1975a).

Furthermore, the nuanced category membership offered by Prototype Theory aptly

accounted for subtle differences among abstract concepts. For instance, Coleman and Kay

(1981) delved into the concept of lie, which has many variants and can only be properly

considered in light of the context. For instance, a white lie intended to spare suffering may

not always be classified as a lie.

A different group of cognitive psychologists approached conceptual processing

differently, contending that the complex hierarchies associated with Prototype Theory

might be unnecessary. Instead, A. M. Collins and Loftus (1975) argued that the language

system encoded in people’s minds provides access to the meaning of concepts by means of

abstract, symbolic relationships, or Spreading Activation (Loftus, 1975). This claim was in

turn regarded by the proponents of Prototype Theory as a post-hoc explanation lacking

10



precision (Rosch, 1975b).

Around two decades later, the field of embodied cognition emerged, organised

around the tenet of neural reuse (Barsalou, 2003, 1999a; Pulvermüller, 1999). Specifically,

proponents of embodied cognition in conceptual processing contended that the brain

regions in charge of perception and action contributed to the understanding of words by

providing simulations, or reenactments (M. L. Anderson, 2010; Barsalou, 2016). In this

way, brain regions were reused during conceptual processing, a mechanism that would be

spatially efficient.

Language and embodiment

Hereafter, we will delve into the more recent research introduced above. Two

strands stand out: language and embodiment. Research over the past two decades has

suggested that conceptual processing involves both ‘linguistic’ and ‘embodied’ systems of

the brain. First, the language system is characterised by associations across networks of

words (Landauer et al., 1998; Pylyshyn, 1973). For instance, the word ‘window’ often

co-occurs with ‘door’, whereas ‘window’ seldom co-occurs with ‘sheep’.1 Second, the

embodiment system is characterised by associations within perceptual, motor, affective and

social domains (Barsalou, 1999a; Diveica et al., 2022). For instance, reading the words

‘green’ or ‘red’ can activate the same areas that activate upon seeing those colours

(Simmons et al., 2007). Both language and embodiment have strengths and limitations

(Bernabeu, 2017; Connell, 2019; Dove, 2020; Kumar, 2021; Louwerse et al., 2015; Mahon &

Hickok, 2016), which we address below. For example, several avenues of research support

the idea that linguistic information may be activated more quickly, and reach peak

activation before embodied information (Louwerse & Connell, 2011; Santos et al., 2011;

Simmons et al., 2008), but this mechanism may be dependent on contextual factors such as

semantic depth (Connell & Lynott, 2014b; Petilli et al., 2021). As a result, conceptual

processing flexibly draws on these systems following the demands of the context (Sato et

al., 2008; Shebani & Pulvermüller, 2018; Willems & Casasanto, 2011). Furthermore,

1 The reader is encouraged to consult the relationship between these and other words using the Latent
Semantic Analysis website at http://lsa.colorado.edu, where they can select the option ‘Matrix
Comparison’.
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research in computational linguistics has further supported the complementarity of

language and embodied information, by revealing increased predictive performance when

models are provided with perceptual information on top of text-based information (Frome

et al., 2013; Roads & Love, 2020).

The terminology used in this topic deserves a note. The first terms of note are

language and embodiment. These terms provide the building blocks for the study of a

more involved phenomenon, as with other dichotomies used in psychology (e.g., Kahneman,

2011; Paivio, 1990). Particularly noteworthy is the term ‘embodiment’, which encompasses

sensory, motor, affective and social information (Borghi et al., 2019; Newcombe et al., 2012;

Zwaan, 2021). These systems have helped organise the study of conceptual processing over

the past decades. First, language refers to a system of word-to-word associations that are

not operationalised in a modality-specific way. These associations are amodal in that they

are operationalised using text-based networks of words (Andrews et al., 2014; Louwerse et

al., 2015). The language system can be operationalised as a variable using word

co-occurrence, which is a calculation of the high-order distance between words (Petilli et

al., 2021; Wingfield & Connell, 2022a). The term ‘high-order’ designates relationships

across networks of words, as opposed to direct relationships (Landauer et al., 1998). On the

other side of the coin, the embodiment system is modality-specific in that it grounds the

meaning of words in thematically-relevant areas of the brain. The activation of these areas

during semantic processing creates a simulation that contributes to the comprehension of

concepts (Barsalou, 1999a). The embodiment system agglutinates four major systems:

perception (Connell, 2019), action (Vukovic et al., 2017), emotion (Kousta et al., 2011) and

sociality (X. Wang et al., 2021). Furthermore, the perceptual domain in turn comprises

vision, hearing, touch, etc. Although these general levels are worth noting due to the

influence over the past decades, it is essential in specific studies to define the object of

study more precisely (Zwaan, 2021), which we think is the general norm. Last, we should

note that we will often use the terms ‘language-based’ and ‘vision-based’ in this thesis.

These terms are practically equivalent to ‘linguistic’ and ‘visual’, respectively. However, the

latter terms are loaded with associations to languages, on the one hand, and to direct

visual perception, on the other hand. Because those associations differ from our intended

12



meaning, we will often use ‘language-based’ and ‘vision-based’, as did Petilli et al. (2021).

The language system is involved in the representation of both abstract and concrete

concepts (Ponari, Norbury, Rotaru, et al., 2018; Reggin et al., 2021). For instance,

measures of distributional semantic distance—solely based on texts from large

corpora—have been shown to capture aspects of the real world with considerable accuracy

(Contreras Kallens et al., 2022; De Deyne et al., 2013; Kumar et al., 2020; Louwerse &

Zwaan, 2009). The language system is likely more important for the processing of

abstract—rather than concrete—concepts, as abstract concepts tend to have reduced

sensorimotor content (Barca et al., 2020; Duñabeitia et al., 2009; Hultén et al., 2021),

although the degree of this difference could be small (De Deyne et al., 2013).

Language-based regularities may even allow distinguishing between concrete and abstract

words, as word concreteness is consistently related to linguistic characteristics such as part

of speech, morphological structure, countability and etymology (Lievers et al., 2021).

Regarding the time course, the language system is activated more quickly in

semantically-deep tasks (Connell & Lynott, 2013; Louwerse & Connell, 2011), whereas

both systems are similarly fast in semantically-shallow tasks (Petilli et al., 2021). For

instance, Louwerse and Connell (2011) found that language-based information better

predicted rapid responses, while perceptual information better predicted slower responses.

In turn, responses of intermediate duration were equally well predicted by both types of

information. As a result of these characteristics, the language system is equipped to

support a major part of conceptual processing (Connell, 2019; Connell & Lynott, 2014a).

However, the language system is hindered by the symbol grounding problem, which refers

to the impossibility of obtaining meaning—or ‘grounding’ lexical content in reality—on the

sole basis of language-based associations (Günther et al., 2021, 2018; Harnad, 1990;

Louwerse, 2011). That is, having only word-to-word associations leads to a circularity

where meaning is never associated with anything in the real world. This is why embodied

simulation is deemed useful. Another limitation is caused by the finite vocabularies of

languages, which sometimes fall short of the richness of sensorimotor experience (De Deyne

et al., 2021; Günther et al., 2021; Majid & Burenhult, 2014; Majid & Levinson, 2011;

13



Majid & van Staden, 2015). Consider all the sensory, motor, affective and social

experiences that cannot be described with a word in your language. Taken together, the

great importance of the language system across studies and across contexts suggests that

language-based associations are necessary for conceptual processing. In addition,

modality-specific information seems to play a significant—if smaller—role, and is especially

relevant in contexts of deeper semantic processing. If this is indeed the case, we could

hypothesise that language is necessary but not sufficient, insofar as some contexts present a

significant contribution of modality-specific information.

The embodiment system is best suited for the representation of concrete concepts,

such as those involving perceptual features (Ostarek & Huettig, 2017; Pecher et al., 1998;

Yee et al., 2012) and actions (Riccardi et al., 2019), such as table or hammer. Some

research has suggested that embodied simulation plays an integral role in conceptual

processing (Pulvermüller, 2013), at least in the context of relatively deep semantic

tasks—e.g., classifying abstract and concrete words—and relatively concrete

concepts—e.g., table (Connell & Lynott, 2016; García et al., 2020; Lebois et al., 2015;

Ostarek & Huettig, 2017; Pecher et al., 1998; Shebani et al., 2021; Vitale et al., 2021;

Vukovic et al., 2017; X. Wang et al., 2021; Yee et al., 2012). Further evidence for the

contextual dependency of the interplay between language and sensorimotor information

was found by Riccardi et al. (2019), who investigated the comprehension of action verbs

and abstract verbs in left-hemisphere stroke patients, finding that the processing of action

concepts relied more heavily on sensory-motor areas. Furthermore, studies have suggested

that even abstract concepts may be partially grounded in modality-specific domains such

as emotion, sociality and interoception (Borghi et al., 2022; Conca et al., 2021; Connell et

al., 2018; Diveica et al., 2022; Kousta et al., 2011; Vigliocco et al., 2014; X. Wang et al.,

2021). For example, the relatively-abstract concepts of fear and sadness are rated as being

highly interoceptive (Connell et al., 2018).

However, other research has curtailed the importance of the embodiment system

(Bottini et al., 2021; Garcea et al., 2013; Günther et al., 2021, 2018; Mahon & Caramazza,

2008; Montero-Melis et al., 2022; Vannuscorps et al., 2016). For instance, studies have
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found that lesions to motor brain areas did not systematically impair the processing of

action concepts in language (Negri et al., 2007; Papeo et al., 2010). Furthermore,

behavioural studies from the past decade have begun constraining the role of perceptual

simulation. For instance, Louwerse and Connell (2011) found that perceptual simulation

was more important late in the time course of property verification (also see Bernabeu et

al., 2017). In another study, Connell and Lynott (2014a) found that the auditory

information in words is relevant for reading aloud but not so much for word identification.

Importantly, even the keenest critiques of embodiment have not denied that conceptual

processing can involve activation of sensory and motor systems. What they questioned was

the role of these activations. For instance, Mahon and Caramazza (2008) argued that these

activations could be a by-product of comprehension rather than a contributor to

comprehension. In conclusion, the language and the embodiment systems are

complementary to each other (Andrews et al., 2009; De Deyne et al., 2021; J. Wang et al.,

2010).

The division between language and embodiment has provided fruitful avenues for

research and yielded a prolific output over the past two decades (Connell, 2019), and many

more research avenues are yet to be explored (Bernabeu et al., 2021).2 However, with more

than two decades of history, it may be pertinent to appraise this division and consider

alternatives. First, we know that the categories we have in our research toolkit may be a

bit arbitrary (Tulving, 2007). Second, cognitive science research needs to be open to

change. In a recent discussion, Michel (2021) contended that there is a stalemate between

the amodal and the modal views. On the one hand, the amodal view has an ‘ad-hoc air’.

This criticism echoes the adjective of ‘post-hoc’ that had been used by Rosch (1975b) in

relation to the spreading activation stance. On the other hand, the modality-specificity—or

embodiment—stance is challenged by having smaller effect sizes (Louwerse et al., 2015)

and by some non-replications (Morey et al., 2022; E.-J. Wagenmakers et al., 2016). The

smaller effect sizes and the non-replications may be more closely related than we often

2 The pregistration in Bernabeu et al. (2021) had to be sidelined due to project adjustments required
during the Covid-19 pandemic. We hope that the research questions laid out in this preregistration inspire
future research.
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acknowledge, as some effects can require sample sizes far exceeding what we are used to

(Marek et al., 2022), and non-replications require the consideration of alternative

explanations (Noah et al., 2018). Regarding sample size, where very large sample sizes are

necessary to study some effects, the onus will be on scientists to decide whether we can and

should invest the required funding.

In sum, Michel (2021) proposed working towards a continuous construal of language

and embodiment in conceptual processing. I am sympathetic to this view, as

continuums—that is, the use of gradual, continuous measures—often outperform

categorical divisions in science. For instance, consider the move from categorical factors to

continuous variables in the area of conceptual processing (Lynott & Connell, 2009; Petilli

et al., 2021). Part of the reason for the advantage of continuous measures probably lies in

the fact that they involve more data, thus offering greater precision. At the same time,

however, taking the leap advocated by Michel will require reframing a longstanding

discussion. I look forward to following such a development in the future. In the present

work, I have adhered to the language-embodiment division, although my use of continuous

predictors aligns with the goal of a continuum between language and embodiment. In this

way, I have investigated how the interplay between language and sensorimotor simulation is

reflected at various levels of the experimental structure—namely, at the levels of

individuals, words and tasks. In closing, if/when the field attempts to overcome the

opposition between language and embodiment, I think it will be important to consider such

a move in the context of neuroscience, too. That is, is it neuroscientifically plausible to

conceive of a single system? Research has demonstrated the role of amodal regions of the

brain and of modality-specific regions during conceptual processing, showing signs of a

continuous progression in spite of the separate specialisation of the areas (Binder & Desai,

2011; Fernandino et al., 2016). In a recent study, Kuhnke et al. (2021) observed a

functional coupling—that is, a functionally useful interplay—between amodal and modal

areas, characterised by a flow of information in both directions. Arguably, this research

provides some support for Michel’s continuum proposal.

One of the core reasons why it is important to investigate language and embodiment
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is the optimality of scientific theories, classically epitomised by Occam’s razor. Occam’s

razor represents the desirability of concise theories. Put concretely: if one single

mechanism could explain a cognitive process, only one mechanism should be used. Gallese

and Lakoff (2005) were among the first to articulate the Occam’s razor argument within

the present topic. The authors argued: ‘In short, we think there is an Occam’s Razor

argument here. The modality-neutral structure is just not needed.’ (p. 468). Gallese and

Lakoff wrote that in 2005. Importantly, since then, a sizable amount of evidence has

challenged the role of embodiment by suggesting that sensorimotor activations are not

conducive to meaning, but are instead of a result of comprehension (Hickok, 2014; Mahon

& Caramazza, 2008; Mahon & Hickok, 2016), and other evidence has favoured the ‘hybrid’

theory, as reviewed above. Indeed, as reviewed above, research has extensively investigated

how language and embodiment interact as a function of the concreteness of concepts and

the semantic depth required by the context. In contrast, the role of individual differences

has received less attention. Furthermore, most of these studies have investigated how

individual differences interact with either language or sensorimotor simulation. For

instance, Pexman and Yap (2018) found that higher-vocabulary individuals were more

sensitive to task-relevant information, such as word concreteness, when performing a task

that required classifying words as abstract or concrete. Similarly, research has found that

physical expertise and perceptual biases are associated with differences in the mental

simulation of meaning (Beilock et al., 2008; Calvo-Merino et al., 2005; Vukovic & Williams,

2015). In spite of the advancements, there is room for the investigation of further

combinations, such as the way in which vocabulary knowledge interacts with both

language-based information and vision-based information.

The present thesis

Chapter 2 describes Study 1, a multi-lab study from the Psychological Science

Accelerator to which I contributed. This study revisited the object orientation effect (S.-C.

Chen et al., 2018), which taps into sensorimotor simulation in conceptual processing. As I

review in Chapter 2, replicating the object orientation effect is important due to its seminal

influence and to the existence of mixed findings. Thanks to a worldwide network of
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laboratories, this study boasted a sample of over 3,000 participants. Furthermore, the

study examined the role of individual differences in mental rotation as well as the role of

language of testing. I contributed theoretical and methodological suggestions to this study

from an early stage, recorded a demonstration video (https://osf.io/h36wr), contributed

data collected from 50 participants at Lancaster University, and then contributed to the

reporting. From now, I look forward to contributing to the latest revisions of this Stage II

Registered Report, before the submission to Psychonomic Bulletin & Review, where this

registered report was accepted in principle.

Study 1 did not replicate the object orientation effect. Furthermore, it revealed that

neither mental rotation nor language interacted with the effect. Since the statistical power

reached in this study is larger than that of most previous studies addressing the object

orientation effect, it is especially important to reflect on the non-replication. It will be

especially important to investigate the methodological characteristics that influence the

robustness of effects. That is, in addition to the real effect size of each effect (which can

only be estimated in research), and in addition to the statistical power of studies (which is

highly dependent on the sample size), what does the operationalisation bear on the results?

One possible influence is the categorical or continuous nature of independent variables.

Chapter 3 describes Study 2, which is formed of three studies (2.1, 2.2 and 2.3).

These studies are thus grouped because they address the same overarching question (see

Wingfield & Connell, 2022a for a similar format). This question is how the interplay

between language and sensorimotor information manifests itself at the levels of individuals,

words and tasks. Furthermore, the study addresses the importance of sample size by

estimating how many participants would be necessary to reliably detect several effects of

interest. Whereas in Study 1 the task used was specific to sensorimotor simulation, the

tasks used in Study 2 are semantic priming, semantic decision and lexical decision, which

allow the analysis of both language-based and vision-based information. It was important

for us to incorporate language because research has suggested that language is

complementary to sensorimotor information, and that it has a greater influence than the

latter. At the level of individual differences, Study 2 examined vocabulary size and
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included general cognition covariates which are important to control for. In addition, the

influence of participants’ gender was considered, as some research has suggested that

language-based information could be more influential in females than in males. At the

word level, text-based variables were used as indices of language-based information,

whereas vision-based variables indexed sensorimotor information. As covariates, lexical

information and word concreteness were included in the analyses. The covariates were

included to attain a higher degree of certainty regarding the effects of interest, as the

former and the latter were often correlated. Furthermore, these analyses included random

effects, which were important to preserve the assumption of independence of observations,

due to the presence of repeated measures.

The results revealed a prominent influence of language-based information and a

smaller effect of vision-based information. Furthermore, the results revealed a set of

interactions suggestive of a ‘relevance advantage’ in higher-vocabulary participants. That

is, these participants were more sensitive to task-relevant features of the words, such as

language-based information in lexical decision and word concreteness in semantic decision.

Last, statistical power analyses revealed the need to dramatically increase sample sizes for

studying vision-based information, as well as for studying the interaction of both

language-based and vision-based information with vocabulary size, gender and presentation

speed.
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Chapter 2 (Study 1): Investigating object orientation effects across 18

languages

At the beginning of my PhD, I contributed to a study led by Dr. Sau-Chin

Chen (from Tzu Chi University, in Taiwan) and coordinated by the

Psychological Science Accelerator (study page available at

https://psysciacc.org/002-object-orientation). This study revisited the

object orientation effect, which taps into sensorimotor simulation in

conceptual processing. In addition the orientation congruency factor, this

study incorporated two variables. The first variable was an individual

difference measuring each participant’s ability to mentally rotate objects.

The second variable was the language of testing, with 18 languages being

used. The object orientation effect was not replicated. Furthermore, the

mental rotation and the language variables did not interact with the effect.

In the present chapter, I describe this study and discuss several aspects

regarding measurement error, replication and future crosslinguistic studies

in conceptual processing.

One of the seminal findings supporting the sensorimotor basis of conceptual

processing was the object orientation effect. Stanfield and Zwaan (2001) observed this

effect in a sentence-picture verification task. On each trial of this task, participants first

read a sentence such as ‘The eagle is in the nest’. On the next screen, they saw a certain

picture and had to verify whether the protagonist of the sentence was present in the

picture. Thus, following the previous example, if the picture showed an eagle, participants

would click on the yes button. The key manipulation of this paradigm, unbeknownst to

participants, was that the protagonist shown in the picture could either match or mismatch

the orientation that had been implied in the sentence. For instance, following the example

sentence above, if participants saw an eagled perched on a branch, the orientation would be
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matched. If, instead, the eagle were flying, the orientation would be mismatched. The

theory of embodiment in language comprehension sustains that people mentally simulate

perceptual and motor features of meaning (Barsalou, 1999b; Pulvermüller, 1999).

Therefore, according to Stanfield and Zwaan, pictures with a mismatching orientation

(compared to pictures with a matching orientation) would incur processing costs, as

participants would need to adjust their mental simulation of the scene. Indeed, Stanfield

and Zwaan observed such an orientation match advantage in their results.

However, subsequent studies revisiting the object orientation effect revealed mixed

results. The finding replicated more successfully in English than in other languages (S.-C.

Chen et al., 2020; de Koning et al., 2017; Koster et al., 2018; Rommers et al., 2013; Zwaan

& Pecher, 2012). One of the non-replications received a response from Zwaan (2014), who

argued that the replication was underpowered—lacking a sufficient sample size—and

pointed to several methodological differences with the original study. These comments are

noteworthy, and will resonate throughout the present thesis. First, it should be seriously

considered whether the sample sizes used in replications are sufficient. Recent research in

neuroscience suggested that studying a certain question—namely, the mapping of

individual differences at the structural and the functional levels—requires far more than

the 25 participants that make up the average sample size in this topic. Rather, the

necessary sample size is around 10,000 participants (Marek et al., 2022). In our topic of

interest, it is just possible that the necessary sample sizes far exceed the figures we are used

to. A second, crucial issue to consider regarding replications is the fact that the results of

our research are absolutely dependent on the method we use, as we demonstrate in Study 2

within the present thesis. From the operationalisation of the research question to the

statistical analysis, every decision could have a great impact on the results (Barsalou,

2019). For instance, Noah et al. (2018) found that the facial-feedback effect was eliminated

when participants were aware of being recorded. Barsalou (2019) described the variables

that can influence an experiment by alluding to the ‘quantum perspective’. That is, a

myriad variables can affect the expression of the cognitive mechanism by which a cognitive

effect arises. Furthermore, the manifestation of the effect in the experimental situation

(traditionally, in the laboratory) need not be the genuine manifestation of the effect. On
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the contrary, the experimental setting tends to be far removed from the real-life settings of

our processes of interest. Against this backdrop, it is not surprising that effects sometimes

do not replicate. I do not think this realisation should lead us to a nihilistic or a fatalistic

standpoint, where we give up our hopes of reaching any trustworthy conclusions. On the

contrary, as Barsalou contends, we could approach the quantum perspective by scrutinising

the variability that underlies the cognitive/experimental effects we study (see Cumming,

2014).3

Study and methods

S.-C. Chen et al. (2018) revisited the object orientation effect by conducting a large,

crosslinguistic study (for materials and updates on this study, please see

https://osf.io/e428p).4 The design comprised the classic sentence-picture verification task,

with objects matching or mismatching the orientation implied in the preceding sentence on

each trial. The sample size was far larger than the average in the field. English had 1,363

participants. The other languages had a minimum of 50 and a maximum of 262

participants. This large sample size was necessary to cater to the possibility of a

non-replication, which would undoubtedly raise the caveat that the sample size was

insufficient. Furthermore, the study also included an individual difference that measured

participants’ ability to mentally rotate objects. The inclusion of such an individual

difference in the model was motivated by previous suggestions that this ability could act as

a confound, by interfering with the effect of interest (S.-C. Chen et al., 2018). Such a

possibility was not too remote, according to recent research that has highlighted the role of

participant-specific cognitive biases (DeLuca et al., 2019; Montero-Melis, 2021).

The results were analysed using mixed-effects models. The specific approach

adopted with these models was not very conservative, as random slopes were not included

in the model due to their lack of significance. This contrasts with the approach we took in

Study 2, by which we pursued a maximal random-effects structure to create a conservative

3 Thank you to Dr. Margriet Groen and Prof. Max Louwerse for a discussion on this topic.
4 Please note that the preprint of S.-C. Chen et al. (2018) mentions ‘14’ languages but finally 18 languages
were present in the study.

22

https://osf.io/e428p


analysis (Brauer & Curtin, 2018; Singmann & Kellen, 2019).

Results

The results did not present a main effect of orientation match in any of the 18

languages. Furthermore, the mental rotation score was not found to predict the

(non-significant) difference between the match and the mismatch conditions.

Discussion

Taken together, and considered in light of previous non-replications, the present

study supports the absence of the object orientation effect, even though—arguably—the

jury always remains out in psychological science. In my view, both original results and

replications are subject to questioning, and it is only through the accumulation of

consistent findings that we can increase our certainty. When non-replications accumulate

and we our certainty about an effect declines, it is time to consider why a theory is

supported by certain operationalisations and only weakly supported (if at all) by other

operationalisations. Examining the role of the operationalisation is a key step in the

replication cycle, and I think this question will require more research over the coming

decades. In the present thesis, we can compare two operationalisations of the embodied

cognition theory. In Study 1, the object orientation effect has been used, which implements

a factorial design. That is, the main independent variable is made up of categorical levels.

Interestingly, the action-sentence compatibility effect—which could not be replicated

recently (Morey et al., 2022)—also involves a factorial design. In contrast, in Study 2, we

will use continuous variables capturing the degree of visual information associated with

words (among other variables). Thus, one of the questions that should be examined in

future research is whether the nature of the independent variables—e.g., categorical versus

continuous—could account for the replication success. Insofar as continuous variables

contain more information than categorical ones, the former type might offer more

statistical power (Cohen, 1983; Petilli et al., 2021).

Furthermore, the study of S.-C. Chen et al. (2018) was pioneering as it investigated

the object orientation effect across 18 languages, including Arabic, Hebrew, Polish,
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Simplified Chinese and Turkish. The breadth of crosslinguistic variation deployed in this

study constitutes a very novel contribution to the topic of conceptual processing. Precisely

the scarcity of precedents makes such a crosslinguistic investigation challenging nowadays.

Thus, we could now consider some desirable characteristics for future studies, such as the

need to reach sufficient sample sizes in all languages. Determining a sufficient sample size

will require a conservative power analysis that should itself be based on a sufficient amount

of reliable data (Albers & Lakens, 2018). Furthermore, to prevent the misinterpretation of

crosslinguistic differences, all languages should have the same sample size.

Last, for the longer term, it would be desirable to work towards a theory of

crosslinguistic variation in conceptual processing, which would help in the design of studies

and in the interpretation of any crosslinguistic differences. This goal will require research

on the lexicosemantic and syntactic differences across languages that are relevant to the

effect of interest in conceptual processing (in this case, the object orientation effect). In

S.-C. Chen et al. (2018), we outlined some typological differences across some of the

languages examined; specifically, differences in the lexical encoding of motion (Verkerk,

2014) and in the encoding of placement (Newman, 2002). While this was hopefully a move

in the right direction, I think that future empirical work with a crosslinguistic aspiration

would necessitate further typological theory. This is very much uncharted territory in the

topic of conceptual processing, so it is exciting but also uncertain. To help chart the

course, the topic area of linguistic relativity is likely to contain useful resources and

examples. For instance, Bernabeu and Tillman (2019) suggested that a novel typological

classification of motion (Verkerk, 2014) could be useful for the design of studies in

linguistic relativity. Specifically, Verkerk (2014) created a numeric rating for the degree to

which 20 Indo-European languages adhered to the pattern of satellite-framing and

verb-framing. This represented a major step beyond the dichotomic division between the

two satellite and verb framing. Indeed, Verkerk put numbers to the nuances holding across

20 languages. Bernabeu and Tillman suggested the use of Verkerk’s classification in the

organisation of linguistic relativity studies. Arguably, the kind of theoretical and

methodological instruments that are available for investigating lingusitic relativity will also

be necessary for the crosslinguistic study of conceptual processing. In conclusion,
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incorporating a crosslinguistic strand to the study of conceptual processing might lead us

to realising the role of language-specific patterns, now that we have realised the role of the

semantic context and of participants’ individual differences (both aspects addressed in the

next chapter).

Three of the topics discussed in this chapter constitute key elements of the next

chapter, which will describe Study 2. The first of these topics is the role of sensorimotor

simulation in conceptual processing. The second topic is the role of individual differences.

The third topic is the importance of statistical power. In addition to these topics, Study 2

will also incorporate the language system to the study of conceptual processing. Whereas

sensorimotor simulation is characterised by detailed representations that tend to be linked

to physical experience, language is characterised by abstract associations across networks of

words. Research has suggested that language and simulation are compatible and

complementary (Banks et al., 2021; Kiela & Bottou, 2014; Lam et al., 2015; Louwerse et

al., 2015; Pecher et al., 1998; Petilli et al., 2021).
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Chapter 3 (Study 2). Language and vision in conceptual processing: Multilevel

analysis and statistical power

Research has suggested that conceptual processing depends on both

language-based and vision-based information. We tested this interplay at

three levels of the experimental structure: individuals, words and tasks.

To this end, we drew on three existing, large data sets that implemented

the paradigms of semantic priming, semantic decision and lexical decision.

We extended these data sets with measures of language-based and

vision-based information, and analysed how the latter variables interacted

with participants’ vocabulary size and gender, and also with presentation

speed in the semantic priming study. We performed the analysis using

mixed-effects models that included a comprehensive array of fixed

effects—including covariates—and random effects. First, we found that

language-based information was more important than vision-based

information. Second, in the semantic priming study—whose task required

distinguishing between words and nonwords—, both language-based and

vision-based information were more influential when words were presented

faster. Third, a ’task-relevance advantage’ was identified in

higher-vocabulary participants. Specifically, in lexical decision,

higher-vocabulary participants were more sensitive to language-based

information than lower-vocabulary participants. In contrast, in semantic

decision, higher-vocabulary participants were more sensitive to word

concreteness. Fourth, we demonstrated the influence of the analytical

method on the results. These findings support the interplay between

language and vision in conceptual processing, and demonstrate the

influence of measurement instruments on the results. Last, we estimated

the sample size required to reliably investigate various effects. We found

that 300 participants were sufficient to examine the effect of
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language-based information contained in words, whereas more than 1,000

participants were necessary to examine the effect of vision-based

information and the interactions of both former variables with vocabulary

size, gender and presentation speed. In conclusion, this power analysis

suggests that larger sample sizes are necessary to investigate perceptual

simulation and individual differences in conceptual processing.

Over the last two decades, research in the cognitive sciences has suggested that

conceptual processing depends on both language and embodiment systems. That is,

understanding words involves—on the one hand—lexical and semantic associations of an

amodal kind, and—on the other hand—modality-specific associations within perceptual,

motor, affective and social domains (Barsalou et al., 2008; Connell, 2019; Davis & Yee,

2021; Khatin-Zadeh et al., 2021; Vigliocco et al., 2009). Studies addressing these systems

have found that the language system is overall more prevalent in word processing,

producing larger effect sizes (Banks et al., 2021; Kiela & Bottou, 2014; Lam et al., 2015;

Louwerse et al., 2015; Pecher et al., 1998; Petilli et al., 2021). More intricately, the roles of

language and embodiment are modulated by the characteristics of individuals, words and

tasks. For instance, people’s individual experience with language is associated with

differential effects relating to phonological, lexical and semantic features of words (Jared &

O’Donnell, 2017; Pexman & Yap, 2018; Yap et al., 2009, 2012, 2017). Similarly, physical

expertise and perceptual biases are associated with differences in the mental simulation of

meaning (Beilock et al., 2008; Calvo-Merino et al., 2005; Vukovic & Williams, 2015).

Furthermore, the embodiment system is especially suited for the processing of concrete

concepts—e.g., red, building (C. R. Jones et al., 2022; Kousta et al., 2011; Ponari, Norbury,

Rotaru, et al., 2018; cf. Borghi et al., 2022). Embodied information also becomes more

important in the following conditions: (I) later in the time courses of word recognition

(Bernabeu et al., 2017; Louwerse & Hutchinson, 2012; cf. Petilli et al., 2021) and property

generation (Santos et al., 2011; Simmons et al., 2008), (II) when participants produce

slower responses (Louwerse & Connell, 2011), and (III) in tasks that elicit deeper semantic
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processing—e.g., semantic decision, as opposed to lexical decision (Ostarek & Huettig,

2017; Petilli et al., 2021). Last, research in computational linguistics has provided further

support for the complementarity of language and embodied information, by revealing

increased predictive performance when models are provided with perceptual information on

top of text-based information (Frome et al., 2013; Roads & Love, 2020).

In spite of the amount of evidence demonstrating the interplay between language

and embodiment, there are four reasons to continue testing the interplay theory. First, the

coexistence of several systems in a scientific theory must be thoroughly justified due to the

value of simplicity (Gallese & Lakoff, 2005; Tillman et al., 2015). This scrutiny is

particularly necessary because the language system has consistently produced larger effect

sizes than the embodiment system (Banks et al., 2021; Kiela & Bottou, 2014; Lam et al.,

2015; Louwerse et al., 2015; Pecher et al., 1998; Petilli et al., 2021). Therefore, it should be

ruled out that the language system can suffice in all contexts.

Second, it is important to examine both language and embodiment across various

levels of the experimental structure—namely, individuals (i.e., due to individual differences

such as vocabulary size), words (i.e., lexical and semantic variables) and tasks (i.e.,

experimental conditions affecting, for instance, processing speed). Some studies have

approached this comprehensive structure but there is still room to widen the scope. One of

the findings revealed by cross-level analyses is the influence of word processing tasks on the

importance of modality-specific information. For instance, Connell and Lynott (2014a)

found that the vision-based information in words is important both for word identification

(i.e., lexical decision) and for reading aloud (i.e., naming). In contrast, the auditory

information in words is important for reading aloud but not so much for word identification.

Another finding from cross-level research is a ‘task-relevance advantage’ for individuals

that have a greater linguistic experience. Specifically, Pexman and Yap (2018) found that

higher-vocabulary individuals were more sensitive to task-relevant information, such as

word concreteness in the semantic decision task. Furthermore, regarding embodiment,

research has revealed that individuals who are briefly exposed to a certain sport develop

neural activity that allows them to mentally simulate sport-specific actions during language
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processing (Beilock et al., 2008). While these works have covered a large swathe of the

present topic, one question remains unanswered: how does an individual’s linguistic

experience relate to their sensivity to both linguistic and embodied information in words?

Third, there is some inconclusive evidence. First, some findings have suggested that

higher-vocabulary participants are more sensitive to language-based information—as

reflected in greater semantic priming (Yap et al., 2017)—, whereas other findings have

suggested the opposite (Yap et al., 2009). Second, some studies have suggested that the

language system is activated before the embodiment system (Lam et al., 2015; Louwerse &

Connell, 2011), whereas a recent study suggested that this pattern does not hold in the

lexical decision task (Petilli et al., 2021). Third, some evidence has suggested that female

participants draw on the language system more prominently than males (Burman et al.,

2008; Hutchinson & Louwerse, 2013; Jung et al., 2019; Ullman et al., 2008), whereas other

research has suggested that this difference is negligible in the general population

(Wallentin, 2020).

Fourth, some of the previous studies could have been affected by the scarcity of

statistical power that has been identified in cognitive psychology and neuroscience (Lynott

et al., 2014; Marek et al., 2022; Montero-Melis et al., 2022). Problematically, low-powered

studies present more errors in the estimation of effect sizes and p values (Heyman et al.,

2018; Loken & Gelman, 2017; Vasishth, Mertzen, et al., 2018). The current studies address

these four key issues.

The present studies

We revisit three larger-than-average studies to investigate the interplay between

language and embodiment in conceptual processing. We devote a study to each of the

three original studies. Thus, Study 2.1 is centred on Hutchison et al. (2013) and uses the

semantic priming paradigm. Study 2.2 is centred on Pexman et al. (2017) and uses the

semantic decision paradigm. Study 2.3 is centred on Balota et al. (2007) and uses the

lexical decision paradigm. Each of these central studies contained measures of participants’

vocabulary size and gender. Furthermore, the core data sets were expanded by adding

variables that captured the language-based information in words (Mandera et al., 2017;
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Wingfield & Connell, 2022a) and the vision-based information in words (Lynott et al.,

2020; Petilli et al., 2021)—the latter being used to represent the embodiment system. One

of the key questions we investigated using this array of variables was whether individual

differences in vocabulary and gender modulated participants’ sensivity to the

language-based and vision-based information in words. Alongside the effects of interest,

several covariates were included in the models to allow a rigorous analysis (Sassenhagen &

Alday, 2016). These covariates comprised measures of general cognition and lexical

characteristics of the stimulus words. Last, in each study, we performed a statistical power

analysis to help estimate the sample size needed to investigate a variety of effects in future

studies.

Below, we delve into the language and the embodiment components of these studies.

Language

Studies have operationalised the language system at the word level using measures

that capture the relationships among words without explicitly drawing on any sensory or

affective modalities. Two main types of linguistic measures exist: those based on text

corpora—dubbed word co-occurrence measures (Bullinaria & Levy, 2007; Petilli et al.,

2021; Wingfield & Connell, 2022a)—and those based on associations collected from human

participants—dubbed word association measures (De Deyne et al., 2016, 2019).

Notwithstanding the interrelation between word co-occurrence and word association

(Planchuelo et al., 2022), co-occurrence is more purely linguistic, whereas association

indirectly captures more of the sensory and affective meaning of words (De Deyne et al.,

2021).

Operationalisation and hypotheses

In Study 2.1 (semantic priming) and Study 2.2 (semantic decision), co-occurrence

measures were used to represent the language system at the word level. Specifically, in

Study 2.1, this measure was called language-based similarity, and it was based on the

degree of text-based co-occurrence between the prime word and the target word in each

trial (Mandera et al., 2017). In Study 2.2, the measure was called word co-occurrence,
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and it was based on the degree of text-based co-occurrence between each stimulus word

and the words ‘abstract’ and ‘concrete’ (Wingfield & Connell, 2022a). In Study 2.3 (lexical

decision), a co-occurrence measure could not be used, as the co-occurrence of words in

consecutive trials could not be calculated due to the high frequency of nonword trials

throughout the lexical decision task. Therefore, a single-word measure had to be used

instead. Word frequency was used as it was the lexical variable, among five, that had the

largest effect (see Appendix A).

At the individual level, language was represented by participants’ vocabulary size in

Studies 2.1 and 2.2, and by participants’ vocabulary age in Study 2.3. Vocabulary size and

age did not differ in any consequential way. They both captured the amount of vocabulary

knowledge of each participant, by testing their knowledge of a small sample of pre-normed

words, and thereby inferring their overall knowledge.

We hypothesised that word co-occurrence, word frequency and vocabulary size

would all have facilitatory effects on participants’ performance, with higher values leading

to shorter RTs (Pexman & Yap, 2018; Wingfield & Connell, 2022a; Yap et al., 2009).

Embodiment represented by vision-based information

In previous studies, the embodiment system has been represented at the word level

by perceptual, motor, affective or social variables (Fernandino et al., 2022; Vigliocco et al.,

2009; X. Wang et al., 2021). For instance, the perceptual modalities have often

corresponded to the five Aristotelian senses—vision, hearing, touch, taste and smell

(Bernabeu et al., 2017, 2021; Louwerse & Connell, 2011)—and, less often, to interoception

(Connell et al., 2018). Yet, out of all these domains, vision has been most frequently used in

research (e.g., Bottini et al., 2021; De Deyne et al., 2021; Pearson & Kosslyn, 2015; Petilli

et al., 2021; Yee et al., 2012). The hegemony of vision is likely due to the central position

of vision in the human brain (Reilly et al., 2020) as well as in several languages (Bernabeu,

2018; I.-H. Chen et al., 2019; Lynott et al., 2020; Miceli et al., 2021; Morucci et al., 2019;

Roque et al., 2015; Speed & Brybaert, 2021; Speed & Majid, 2020; Vergallito et al., 2020;

Winter et al., 2018; Zhong et al., 2022). In the present study, we focussed on vision alone

due to three reasons. First, we wanted to use a single variable to represent sensorimotor
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information, just as a single variable would be used to represent linguistic information.

Using a single variable for each system facilitates the analysis of interactions with other

variables. Second, vision is very prominent in cognition, as we just reviewed. Third, we

had planned to use the present research to determine the sample size of a subsequent study

that focusses on vision (indeed, the present study grew out of a statistical power analysis).

Operationalisation and hypotheses

At the word level, we operationalised visual information using the visual strength

variable from the Lancaster Sensorimotor Norms (Lynott et al., 2020). This variable

measures the degree of visual experience associated with concepts. In Study 2.1, we created

the variable visual-strength difference by subtracting the visual strength of the prime

word from that of the target word, in each trial. Thus, visual-strength difference

measured—in each trial—how much the prime word and the target word differed in their

degrees of vision-based information. Even though we could not find any previous studies

that reported the effect of visual strength (or visual-strength difference) on RT, we

hypothesised a priming effect underpinned by this variable, consistent with related research

(Petilli et al., 2021). Specifically, we hypothesised that visual-strength difference would

have an inhibitory effect on participants’ performance, with higher values leading to longer

RTs.

In Studies 2.2 and 2.3, we used the visual strength score per stimulus word. We

hypothesised that this variable would have a facilitatory effect on participants’

performance—i.e., higher values leading to shorter RTs—, consistent with related research

(Petilli et al., 2021).

Unlike language, vision was not examined at the individual level because the

available variables were based on one self-reported value per participant (Balota et al.,

2007; Hutchison et al., 2013), contrasting with the greater precision of the vocabulary

measures, which consisted of multiple trials. Nonetheless, we recognise the need to

investigate the role of perceptual experience (Muraki & Pexman, 2021; Plaut & Booth,

2000) alongside that of linguistic experience in the future.
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Levels of analysis

Experimental data in psycholinguistics can be divided into various levels, such as

individuals, words and tasks. The simultaneous examination of a theory across several

levels is expected to enhance our understanding of the theory (Ostarek & Bottini,

2021)—for instance, by revealing the distribution of explanatory power (that is, effect size)

within and across these levels. Several studies have probed more than one level—for

instance, word level and individual level (Aujla, 2021; Lim et al., 2020; Pexman & Yap,

2018; Yap et al., 2009), or word level and task level (Al-Azary et al., 2022; Connell &

Lynott, 2013, 2014a; Ostarek & Huettig, 2019; Petilli et al., 2021). This multilevel

approach is complementary to a different line of research that aims to test the causality of

various sources of information in conceptual processing, such as language (Ponari, Norbury,

Rotaru, et al., 2018), perception (Stasenko et al., 2014) and action (Speed et al., 2017).

The three levels considered in this study—individual, word and task—are described

below.

Individual level

The individual level is concerned with the role of individual differences in domains

such as language, perception, mental imagery and physical experience (e.g., Daidone &

Darcy, 2021; Davies et al., 2017; Dils & Boroditsky, 2010; Fetterman et al., 2018; Holt &

Beilock, 2006; Mak & Willems, 2019; Miceli et al., 2022; Pexman & Yap, 2018; Vukovic &

Williams, 2015; Yap et al., 2009, 2012, 2017).5 Recent studies have revealed important

roles of participant-specific variables in topics where these variables have not traditionally

been considered (DeLuca et al., 2019; Kos et al., 2012; Montero-Melis, 2021).

Vocabulary size is used to represent the language system at the individual level. It

measures the number of words a person can recognise out of a sample. Furthermore,

covariates akin to general cognition—where available—were included the models (see

Covariates section below).

5 According to Lamiell (2019), ‘individual differences’ is a misnomer in that the analyses used to examine
those (e.g, regression) are not participant-specific. While this may partly hold for the current study too,
the use of by-participant random effects increases the role of individuals in the analysis.
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Word level

The word level is concerned with the lexical and semantic information in words

(e.g., De Deyne et al., 2021; Lam et al., 2015; Lund et al., 1995; Lund & Burgess, 1996;

Lynott et al., 2020; Mandera et al., 2017; Petilli et al., 2021; Pexman et al., 2017; Santos et

al., 2011; Wingfield & Connell, 2022a). The word-level variables of interest in this study

are language-based and vision-based information (both described above). The covariates

are lexical variables and word concreteness. The lexical covariates were selected in each

study out of the same five variables (see Covariates section below).

Task level

The task level is concerned with experimental conditions affecting, for instance,

processing speed. In Study 2.1 (semantic priming), there is one task-level factor, namely,

stimulus onset asynchrony (SOA), which measures the temporal interval between the onset

of the prime word and the onset of the target word.6 In Studies 2.2 and 2.3, there are no

task-level variables.

Beyond task-level variables, there is an additional source of task-related information

across the three studies—namely, the experimental paradigm used in each study (i.e.,

semantic priming, semantic decision and lexical decision). Indeed, it is possible to examine

how the effects vary across these paradigms (see Wingfield & Connell, 2022a). This

comparison, however, must be considered cautiously due to the existence of other

non-trivial differences across these studies, such as the numbers of observations. With this

caveat noted, the tasks used across these studies likely elicit varying degrees of semantic

6 The names of all variables used in the analyses were slightly adjusted for this text to facilitate their
understanding—for instance, by replacing underscores with spaces (conversions reflected in the scripts
available at http://doi.org/10.17605/OSF.IO/UERYQ). One specific case deserves further comment. We
use the formula of the SOA in this paper, instead of the ‘interstimulus interval’ (ISI)—which we used in the
analysis—, as the SOA has been more commonly used in previous papers (e.g., Hutchison et al., 2013;
Pecher et al., 1998; Petilli et al., 2021; Yap et al., 2017). In our analysis, we used the ISI formula as it was
the one present in the data set of Hutchison et al. (2013)—retrieved from
https://www.montana.edu/attmemlab/documents/all%20ldt%20subs_all%20trials3.xlsx. The only
difference between these formulas is that the ISI does not count the presentation of the prime word. In the
current study (Hutchison et al., 2013), the presentation of the prime word lasted 150 ms. Therefore, the 50
ms ISI is equivalent to a 200 ms SOA, and the 1,050 ms ISI is equivalent to a 1,200 ms SOA. The use of
either formula in the analysis would not affect our results, as the ISI conditions were recoded as -0.5 and
0.5 (Brauer & Curtin, 2018).
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depth, as ordered below (see Balota & Lorch, 1986; Barsalou et al., 2008; Becker et al.,

1997; de Wit & Kinoshita, 2015; Joordens & Becker, 1997; Lam et al., 2015; Muraki &

Pexman, 2021; Ostarek & Huettig, 2017; Versace et al., 2021; Wingfield & Connell, 2022a).

1. Semantic decision (Study 2.2) likely elicits the deepest semantic processing, as the

instructions of this task ask for a concreteness judgement. In this task, participants

are asked to classify words as abstract or concrete, which elicits deeper semantic

processing than the task of identifying word forms—i.e., lexical decision (de Wit &

Kinoshita, 2015).

2. Semantic priming (Study 2.1). The task administered to participants in semantic

priming studies is often lexical decision, as in Study 2.1 below. The fundamental

characteristic of semantic priming is that, in each trial, a prime word is briefly

presented before the target word. The prime word is not directly relevant to the task,

as participants respond to the target word. Nonetheless, participants normally

process both the prime word and the target word in each trial, and this combination

allows researchers to analyse responses based on the prime–target relationship. In

this regard, this paradigm could be considered more deeply semantic than lexical

decision. Indeed, slower responses in semantic priming studies—reflecting difficult

lexical decisions—have been linked to larger priming effects (Balota et al., 2008;

Hoedemaker & Gordon, 2014; Yap et al., 2013), revealing a degree of semantic

association that has not been identified in the lexical decision task.

3. Lexical decision (Study 2.3) is likely the semantically-shallowest task of these three,

as it focusses solely on the identification of word forms.

Hypotheses

The central objective of the present studies is the simultaneous investigation of

language-based and vision-based information, along with the interactions between each of

those and vocabulary size, gender and presentation speed (i.e., SOA). Previous studies

have examined subsets of these effects using the same data sets we are using (Balota et al.,
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2007; Petilli et al., 2021; Pexman et al., 2017; Pexman & Yap, 2018; Wingfield & Connell,

2022a; Yap et al., 2012, 2017). Out of these studies, only Petilli et al. (2021) investigated

both language and vision. However, in contrast to our present study, Petilli et al. did not

examine the role of vocabulary size or any other individual differences, instead collapsing

the data across participants.

In addition to main effects of the aforementioned variables, our three studies have

four interactions in common: (1a) language-based information × vocabulary size, (1b)

vision-based information × vocabulary size, (2a) language-based information ×

participants’ gender, and (2b) vision-based information × participants’ gender. In

addition, Study 2.1 contained two further interactions: (3a) language-based information ×

SOA, (3b) vision-based information × SOA (note that the names of some predictors vary

across studies, as detailed in the present studies section above). Each interaction and the

corresponding hypotheses are addressed below.

1a. Language-based information × vocabulary size

We outline three hypotheses supported by literature regarding the interaction

between language-based information and participants’ vocabulary size.

• Larger vocabulary, larger effects. Higher-vocabulary participants might be more

sensitive to linguistic features than lower-vocabulary participants, thanks to a larger

number of semantic associations (Connell, 2019; Landauer et al., 1998; Louwerse et

al., 2015; Paivio, 1990; Pylyshyn, 1973). For instance, Yap et al. (2017) revisited the

semantic priming study of Hutchinson and Louwerse (2013) and observed a larger

semantic priming effect in higher-vocabulary participants.

• Larger vocabulary, smaller effects. Higher-vocabulary participants might be less

sensitive to linguistic features, thanks to a more automated language processing

(Perfetti & Hart, 2002). Some of the evidence aligned with this hypothesis was

obtained by Yap et al. (2009), who observed a smaller semantic priming effect in

higher-vocabulary participants. Similarly, Yap et al. (2012) found that

higher-vocabulary participants in a lexical decision task (Balota et al., 2007) were less
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sensitive to a cluster of lexical and semantic features (i.e., word frequency, semantic

neighborhood density and number of senses).

• Larger vocabulary, more task-relevant effects. Higher-vocabulary participants might

present a greater sensitivity to task-relevant variables, borne out of their greater

linguistic experience, relative to lower vocabulary participants. This would be

consistent with the findings of Pexman and Yap (2018), who revisited the semantic

decision study of Pexman et al. (2017). The semantic decision task of the Pexman et

al. consisted of classifying words as abstract or concrete. Pexman and Yap found that

word concreteness—a very relevant source of information for this task—was more

influential in higher-vocabulary participants than in lower-vocabulary ones. In

contrast, word frequency and age of acquisition—-not as relevant to the task–were

more influential in lower-vocabulary participants (also see Lim et al., 2020). In our

present studies, we set our hypotheses regarding the ‘task-relevance advantage’ by

working under the assumption that the language-based information in

words—represented by one variable in each study—is important for the three tasks,

given the large effects of language across tasks (Banks et al., 2021; Kiela & Bottou,

2014; Lam et al., 2015; Louwerse et al., 2015; Pecher et al., 1998; Petilli et al., 2021).

Therefore, the relevance hypothesis predicts that higher-vocabulary

participants—compared to lower-vocabulary ones—will be more sensitive to

language-based information (as represented by language-based similarity in

Study 2.1, word co-occurrence in Study 2.2, and word frequency in Study 2.3).

1b. Vision-based information × vocabulary size

To our knowledge, no previous studies have investigated the interaction between

vision-based information and participants’ vocabulary size. We entertained two hypotheses.

First, lower-vocabulary participants might be more sensitive to visual strength than

higher-vocabulary participants. In this way, lower-vocabulary participants might

compensate for the disadvantage on the language side. Second, we considered the

possibility that there were no interaction effect.
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2a. Language-based information × gender

We entertained two hypotheses regarding the interaction between language-based

information and participants’ gender: (a) that the language system would be more

important in female participants than in males (Burman et al., 2008; Hutchinson &

Louwerse, 2013; Jung et al., 2019; Ullman et al., 2008), and (b) that this interaction effect

would be absent, as a recent review suggested that gender differences are negligible in the

general population (Wallentin, 2020).

2b. Vision-based information × gender

To our knowledge, no previous studies have investigated the interaction between

vision-based information and participants’ gender. We entertained two hypotheses. Our

first hypothesis was that this interaction would stand opposite to the interaction between

language and gender. That is, if female participants were to present a greater role of

language-based information, male participants would present a greater role of vision-based

information, thereby compensating for the disadvantage on the language side. Our second

hypothesis was the absence of this interaction effect (see Wallentin, 2020).

3a. Language-based information × SOA

Previous research predicts that language-based information will have a larger effect

with the short SOA than with the long one (Lam et al., 2015; Petilli et al., 2021)), which

also aligns with research demonstrating the fast activation of language-based information

(Louwerse & Connell, 2011; Santos et al., 2011; Simmons et al., 2008).

3b. Vision-based information × SOA

The interaction between vision-based information and SOA allows three hypotheses.

First, some previous research predicts that the role of vision-based information will be

more prevalent with the long SOA than with the short one (Louwerse & Connell, 2011;

Santos et al., 2011; Simmons et al., 2008; also see Barsalou et al., 2008). Second, in

contrast, other research (Petilli et al., 2021) based on the same data that we are analysing

(Hutchison et al., 2013) predicts vision-based priming only with the short SOA (200 ms),
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and not with the long one (1,200 ms). Third, other research does not predict any

vision-based priming effect (Hutchison, 2003; Ostarek & Huettig, 2017; Pecher et al., 1998;

Yee et al., 2012). In this regard, some studies have observed vision-based priming when the

task was preceded by another task that required attention to visual features of concepts

(Pecher et al., 1998; Yee et al., 2012), but the present data (Hutchison et al., 2013) does

not contain such a prior task.

Language and vision across studies

Next, we consider our hypotheses regarding the role of language and vision across

studies. Yet, before addressing those, we reiterate that caution is required due to the

existence of other differences across these studies, such as the number of observations.

First, we hypothesise that language-based information will be relevant in the three studies

due to the consistent importance of language observed in past studies (Banks et al., 2021;

Kiela & Bottou, 2014; Lam et al., 2015; Louwerse et al., 2015; Pecher et al., 1998; Petilli et

al., 2021). Second, the extant evidence regarding vision-based information is less

conclusive. Some studies have observed effects of vision-based information (Connell &

Lynott, 2014a; Flores d’Arcais et al., 1985; Petilli et al., 2021; Schreuder et al., 1984),

whereas others have not (Hutchison, 2003; Ostarek & Huettig, 2017), and a third set of

studies have only observed them when the critical task was preceded by a task that

required attention to visual features of concepts (Pecher et al., 1998; Yee et al., 2012).

Based on these precedents, we hypothesise that vision-based information will be relevant in

semantic decision, whereas it might or might not be relevant in semantic priming and in

lexical decision.

Statistical power analysis

Statistical power depends on the following factors: (1) sample size—comprising the

number of participants, items, trials, etc.—, (2) effect size, (3) measurement variability and

(4) number of comparisons being performed. Out of these, sample size is the factor that can

best be controlled by researchers (Kumle et al., 2021). The three studies we present below,

containing larger-than-average sample sizes, offer an opportunity to perform an a-priori
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power analysis to help determine the sample size of future studies (Albers & Lakens, 2018).

Motivations

Insufficient statistical power lowers the reliability of effect sizes, and increases the

likelihood of false positive results—i.e., Type I errors—as well as the likelihood of false

negative results—i.e., Type II errors (Gelman & Carlin, 2014; Loken & Gelman, 2017;

Tversky & Kahneman, 1971; von der Malsburg & Angele, 2017). For instance, Vasishth

and Gelman (2021) illustrate how, in low-powered studies, effect sizes associated with

significant results tend to be overestimated (also see Vasishth, Mertzen, et al., 2018).

Over the past decade, replication studies and power analyses have uncovered

insufficient sample sizes in psychology (Brysbaert, 2019; Heyman et al., 2018; Lynott et al.,

2014; Montero-Melis et al., 2017, 2022; Rodríguez-Ferreiro et al., 2020; Vasishth, Mertzen,

et al., 2018). In one of these studies, Heyman et al. (2018) demonstrated that increasing

the sample size resulted in an increase of the reliability of the estimates, which in turn

lowered the Type I error rate and the Type II error rate—i.e., false negative and false

positive results, respectively. Calls for larger sample sizes have also been voiced in the field

of neuroscience. For instance, Marek et al. (2022) estimated the sample size that would be

required to reliably study the mapping between individual differences—such as general

cognition—and brain structures. The authors found that the current median of 25

participants in each of these studies contrasted with the thousands of participants—around

10,000—that would be needed for a well-powered study (also see Button et al., 2013).

More topic-specific power analyses are necessary due to several reasons. First, power

analyses provide greater certainty on the reasons behind non-replications (e.g., Open

Science Collaboration, 2015), and behind non-significant results at large. Non-replications

are not solely explained by methodological differences across studies, questionable research

practices and publication bias (C. J. Anderson et al., 2016; Barsalou, 2019; Corker et al.,

2014; Gilbert et al., 2016; Williams, 2014; Zwaan, 2014; also see Tiokhin et al., 2021). In

addition to these factors, a lack of statistical power can cause non-replications and

non-significant results (see Loken & Gelman, 2017; Vasishth & Gelman, 2021).
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Regarding non-significant results, it is worthwhile to consider some examples from

research on individual differences. In this literature, there is a body of non-significant

results, both in behavioural studies (Daidone & Darcy, 2021; Hedge et al., 2018; Muraki &

Pexman, 2021; Ponari, Norbury, Rotaru, et al., 2018; Rodríguez-Ferreiro et al., 2020; for a

Bayes factor analysis, see Rouder & Haaf, 2019) and in neuroscientific studies (Diaz et al.,

2021). A greater availability of power analyses within this topic area and others will at

least shed light on the influence of statistical power on the results. Furthermore, power

analyses facilitate the identification of sensible sample sizes for future studies. Last, it

should be noted that although increasing the statistical power comes at a cost in the short

term, power analyses will help maximise the use of research funding in the long term by

fostering more replicable research (see Vasishth & Gelman, 2021; remember Open Science

Collaboration, 2015).

General methods

The analytical method was broadly similar across the three studies. Below, we

present the commonalities in the statistical analysis and in the power analysis. Several R

packages from the ‘tidyverse’ (Wickham et al., 2019) were used.

Covariates

Several covariates—or nuisance variables—were included in each study to allow a

rigorous analysis of the effects of interest (Sassenhagen & Alday, 2016). Unlike the effects

of interest, these covariates were not critical to our research question (i.e., the interplay

between language-based and vision-based information). They comprised participant-specific

variables (e.g., attentional control), lexical variables (e.g., word frequency) and word

concreteness. The covariates are distinguished from the effects of interest in the results

table(s) in each study. The three kinds of covariates included were as follows.

Participant-specific covariates were measures akin to general cognition, and were

included because some studies have found that the effect of vocabulary size was moderated

by general cognition variables such as processing speed (Ratcliff et al., 2010; Yap et al.,

2012). Similarly, research has evidenced the role of attentional control (Hutchison et al.,
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2014; Yap et al., 2017), and authors have expressed the desirability of including such

covariates in models (James et al., 2018; Pexman & Yap, 2018). Therefore, we included in

the analyses a individual measure of ‘general cognition’, where available. These measures

were available in the first two studies, and they indexed task performance abilities that

were different from vocabulary knowledge. We refer to them by their more specific names

in each study.7 In Study 2.1, the measure used was attentional control (Hutchison et

al., 2013). In Study 2.2, it was information uptake (Pexman & Yap, 2018). In Study 2.3,

such a covariate was not used as it was not available in the data set of Balota et al. (2007).

Lexical covariates were selected in every study out of the same five variables, which

had been used as covariates in Wingfield and Connell (2022a; also see Petilli et al., 2021).

They comprised: number of letters (i.e., orthographic length), word frequency, number of

syllables (both the latter from Balota et al., 2007), orthographic Levenshtein distance

(Yarkoni et al., 2008) and phonological Levenshtein distance (Suárez et al., 2011; Yap &

Balota, 2009). The selection among these candidates was performed because some of them

were highly intercorrelated—i.e., r > .70 (Dormann et al., 2013; Harrison et al., 2018). The

correlations and the selection models are available in Appendix A.

Word concreteness was included due to the pervasive effect of this variable across

lexical and semantic tasks (Brysbaert et al., 2014; Connell & Lynott, 2012; Pexman & Yap,

2018), and due to the sizable correlations (r > .30) between word concreteness and some

other predictors, such as visual strength (see correlation figures in each study).

Furthermore, the role of word concreteness has been contested, with some research

suggesting that its effect stems from perceptual simulation (Connell & Lynott, 2012) versus

other research suggesting that the effect is amodal (Bottini et al., 2021). In passing, we will

bring our results to bear on the role of word concreteness.

Data preprocessing and statistical analysis

In the three studies, the statistical analysis was designed to investigate the

contribution of each effect of interest. The following preprocessing steps were applied.

7 The general cognition measures could also be dubbed general or fluid intelligence, but we think that
cognition is more appropriate in our present context.
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First, incorrect responses were removed. Second, nonword trials were removed (only

necessary in Studies 2.1 and 2.3). Third, too fast and too slow responses were removed.

For the latter purpose, we applied the same thresholds that had been applied in each of the

original studies. That is, in Study 2.1, we removed responses faster than 200 ms or slower

than 3,000 ms (Hutchison et al., 2013). In Study 2.2, we removed responses faster than 250

ms or slower than 3,000 ms (Pexman & Yap, 2018). In Study 2.3, we removed responses

faster than 200 ms or slower than 4,000 ms (Balota et al., 2007). Next, the dependent

variable—response time (RT)—was z-scored around each participant’s mean to curb the

influence of each participant’s baseline speed (Balota et al., 2007; Kumar et al., 2020; Lim

et al., 2020; Pexman et al., 2017; Pexman & Yap, 2018; Yap et al., 2012, 2017). This was

important because the size of experimental effects is known to increase with longer RTs

(Faust et al., 1999). Next, binary predictors were recoded into continuous variables (Brauer

& Curtin, 2018). Specifically, participants’ gender was recoded as follows: Female = 0.5, X

= 0, Male = -0.5. The SOAs in Study 2.1 were recoded as follows: 200 ms = -0.5; 1,200 ms

= 0.5. Next, the data sets were trimmed by removing rows that lacked values on any

variable, and by also removing RTs that were more than 3 standard deviations (SD) away

from the mean (M). The nesting factors applied in the trimming are specified in each

study. Finally, all predictors were z-scored, resulting in M ≈ 0 and SD ≈ 1 (values not

exact as the variables were not normally distributed). More specifically, between-item

predictors—i.e., word-level variables (e.g., language-based information) and task-level

variables (e.g., SOA)—were z-scored around each participant’s own mean (Brauer &

Curtin, 2018).

Random effects

With regard to random effects, participants and stimuli were crossed in the three

studies. That is, each participant was presented with a subset of the stimuli. Conversely,

each word was presented to a subset of participants. Therefore, linear mixed-effects models

were implemented. These models included a maximal random-effects structure, with

by-participant and by-item random intercepts, and the appropriate random slopes for all

effects of interest (Barr et al., 2013; Brauer & Curtin, 2018; Singmann & Kellen, 2019).
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Random effects—especially random slopes—constrain the analytical space by claiming

their share of variance. As a result, that variance cannot be taken by the fixed effects. In

the semantic priming study, the items were prime–target pairs, whereas in the semantic

decision and lexical decision studies, the items were individual words. In the case of

interactions, random slopes were included only when the interacting variables varied within

the same unit (Brauer & Curtin, 2018)—e.g., an interaction of two variables varying within

participants (only present in Study 2.1). Where required due to convergence warnings,

random slopes for covariates were removed, as inspired by Remedy 11 from Brauer and

Curtin (2018). In this regard, whereas Brauer and Curtin (2018) contemplate the removal

of random slopes for covariates only when the covariates are not interacting with any

effects of interest, we removed random slopes for covariates even if they interacted with

effects of interest because these interactions were covariates themselves.

To avoid an inflation of the Type I error rate—i.e., false positives—, the random

slopes for the effects of interest (as indicated in each study) were never removed (see Table

17 in Brauer & Curtin, 2018; for an example of this approach, see Diaz et al., 2021). This

approach arguably provides a better protection against false positives (Barr et al., 2013;

Brauer & Curtin, 2018; Singmann & Kellen, 2019) than the practice of removing random

slopes when they do not significantly improve the fit (Baayen et al., 2008; Bates et al., 2015;

e.g., Bernabeu et al., 2017; Pexman & Yap, 2018; but also see Matuschek et al., 2017).

Frequentist analysis

P values were calculated using the Kenward-Roger approximation for degrees of

freedom (Luke, 2017) in the R package ‘lmerTest’, Version 3.1-3 (Kuznetsova et al., 2017).

The latter package in turn used ‘lme4’, Version 1.1-26 (Bates et al., 2015; Bates et al.,

2021). To facilitate the convergence of the models, the maximum number of iterations was

set to 1 million. Diagnostics regarding convergence and normality are provided in

Appendix B. Those effects that are non-significant or very small are best interpreted by

considering the confidence intervals and the credible intervals (Cumming, 2014).

The R package ‘GGally’ (Schloerke et al., 2021) was used to create correlation plots,

whereas the package ‘sjPlot’ (Lüdecke, 2021) was used for interaction plots.
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Bayesian analysis

A Bayesian analysis was performed to complement the estimates that had been

obtained in the frequentist analysis. Whereas the goal of the frequentist analysis had been

hypothesis testing, for which p values were used, the goal of the Bayesian analysis was

parameter estimation. Accordingly, we estimated the posterior distribution of every effect,

without calculating Bayes factors (for other examples of the same estimation approach, see

Milek et al., 2018; Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; for comparisons

between estimation and hypothesis testing, see Cumming, 2014; Kruschke & Liddell, 2018;

Rouder et al., 2018; Schmalz et al., 2021; Tendeiro & Kiers, 2019, in press; van

Ravenzwaaij & Wagenmakers, 2021). In the estimation approach, the estimates are

interpreted by considering the position of their credible intervals in relation to the expected

effect size. That is, the closer an interval is to an effect size of 0, the smaller the effect of

that predictor. For instance, an interval that is symmetrically centred on 0 indicates a very

small effect, whereas—in comparison—an interval that does not include 0 at all indicates a

far larger effect.

This analysis served two purposes: first, to ascertain the interpretation of the

smaller effects—which were identified as unreliable in the power analyses—, and second, to

complement the estimates obtained in the frequentist analysis. The latter purpose was

pertinent because the frequentist models presented convergence warnings—even though it

must be noted that a previous study found that frequentist and Bayesian estimates were

similar despite convergence warnings appearing in the frequentist analysis

(Rodríguez-Ferreiro et al., 2020). Furthermore, the complementary analysis was pertinent

because the frequentist models presented residual errors that deviated from

normality—even though mixed-effects models are fairly robust to such a deviation (Knief &

Forstmeier, 2021; Schielzeth et al., 2020). Owing to these precedents, we expected to find

broadly similar estimates in the frequentist analyses and in the Bayesian ones. Across

studies, each frequentist model has a Bayesian counterpart, with the exception of the

secondary analysis performed in Study 2.1 (semantic priming) that included vision-based

similarity as a predictor. The R package ‘brms’, Version 2.17.0, was used for the
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Bayesian analysis (Bürkner, 2018; Bürkner et al., 2022).

Priors. The priors were established by inspecting the effect sizes obtained in

previous studies as well as the effect sizes obtained in our frequentist analyses of the

present data (reported in Studies 2.1, 2.2 and 2.3 below). In the first regard, the previous

studies that were considered were selected because the experimental paradigms, variables

and analytical procedures they had used were similar to those used in our current studies.

Specifically, regarding paradigms, we sought studies that implemented: (I) semantic

priming with a lexical decision task—as in Study 2.1—, (II) semantic decision—as in Study

2.2—, or (III) lexical decision—as in Study 2.3. Regarding analytical procedures, we

sought studies in which both the dependent and the independent variables were z-scored.

We found two studies that broadly matched these criteria: Lim et al. (2020) (see Table 5

therein) and Pexman and Yap (2018) (see Tables 6 and 7 therein). Out of these studies,

Pexman and Yap (2018) contained the variables that were most similar to ours, which

included vocabulary size (labelled ‘NAART’) and word frequency.

Based on both these studies and on the frequentist analyses reported below, a range

of effect sizes was identified that spanned between β = -0.30 and β = 0.30. This range was

centred around 0 as the variables were z-scored. The bounds of this range were determined

by the largest effects, which appeared in Pexman and Yap (2018). Pexman et al. conducted

a semantic decision study, and split the data set into abstract and concrete words. The two

largest effects they found were—first—a word concreteness effect in the concrete-words

analysis of β = -0.41, and—second—a word concreteness effect in the abstract-words

analysis of β = 0.20. Unlike Pexman et al., we did not split the data set into abstract and

concrete words, but analysed these sets together. Therefore, we averaged between the

aforementioned values, obtaining a range between β = -0.30 and β = 0.30.

In the results of Lim et al. (2020) and Pexman and Yap (2018), and in our

frequentist results, some effects consistently presented a negative polarity (i.e., leading to

shorter response times), whereas some other effects were consistently positive. We

incorporated the direction of effects into the priors only in cases of large effects that had

presented a consistent direction (either positive or negative) in previous studies and in our
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frequentist analyses in the present studies. These criteria were matched by the following

variables: word frequency—with a negative direction, as higher word frequency leads to

shorter RTs (Brysbaert et al., 2018; Brysbaert et al., 2016; Lim et al., 2020; Mendes &

Undorf, 2021; Pexman & Yap, 2018)—, number of letters and number of syllables—both

with positive directions (Barton et al., 2014; Beyersmann et al., 2020; Pexman & Yap,

2018)—, and orthographic Levenshtein distance—with a positive direction (Cerni et al.,

2016; Dijkstra et al., 2019; Kim et al., 2018; Yarkoni et al., 2008). We did not incorporate

information about the direction of the word concreteness effect, as this effect can follow

different directions in abstract and concrete words (Brysbaert et al., 2014; Pexman & Yap,

2018), and we analysed both sets of words together. In conclusion, the four predictors that

had directional priors were covariates. All the other predictors had priors centred on 0.

Last, as a methodological matter, it is noteworthy that most of the psycholinguistic studies

applying Bayesian analysis have not incorporated any directional information in priors

(e.g., Pregla et al., 2021; Rodríguez-Ferreiro et al., 2020; Stone et al., 2020; cf. Stone et al.,

2021).

Prior distributions and prior predictive checks. The choice of priors can influence

the results in consequential ways. To assess the extent of this influence, prior sensitivity

analyses have been recommended. These analyses are performed by comparing the effect of

more and less strict priors—or, in other words, priors varying in their degree of

informativeness. The degree of variation is adjusted through the standard deviation, and

the means are not varied (Lee & Wagenmakers, 2014; Schoot et al., 2021; Stone et al.,

2020).

In this way, we compared the results obtained using ‘informative’ priors (SD = 0.1),

‘weakly-informative’ priors (SD = 0.2) and ‘diffuse’ priors (SD = 0.3). These standard

deviations were chosen so that around 95% of values in the informative priors would fall

within our initial range of effect sizes that spanned from -0.30 to 0.30. All priors are

illustrated in Figure 1. These priors resembled others from previous psycholinguistic

studies (Pregla et al., 2021; Stone et al., 2021; Stone et al., 2020). For instance, Stone et al.

(2020) used the following priors: Normal(0, 0.1), Normal(0, 0.3) and Normal(0, 1). The
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range of standard deviations we used—i.e., 0.1, 0.2 and 0.3—was narrower than those of

previous studies because our dependent variable and our predictors were z-scored, resulting

in small estimates and small SDs (see Lim et al., 2020; Pexman & Yap, 2018). These

priors were used on the fixed effects and on the standard deviation parameters of the fixed

effects. For the correlations among the random effects, an LKJ(2) prior was used

(Lewandowski et al., 2009). This is a ‘regularising’ prior, as it assumes that high

correlations among random effects are rare (also used in Rodríguez-Ferreiro et al., 2020;

Stone et al., 2021; Stone et al., 2020; Vasishth, Nicenboim, et al., 2018).

The adequacy of each of these priors was assessed by performing prior predictive

checks, in which we compared the observed data to the predictions of the model (Schoot et

al., 2021). Furthermore, in these checks we also tested the adequacy of two model-wide

distributions: the traditional Gaussian distribution (default in most analyses) and an

exponentially modified Gaussian—dubbed ‘ex-Gaussian’—distribution (Matzke &

Wagenmakers, 2009). The ex-Gaussian distribution was considered because the residual

errors of the frequentist models were not normally distributed (Lo & Andrews, 2015), and

because this distribution was found to be more appropriate than the Gaussian one in a

previous, related study (see supplementary materials of Rodríguez-Ferreiro et al., 2020).

The ex-Gaussian distribution had an identity link function, which preserves the

interpretability of the coefficients, as opposed to a transformation applied directly to the

dependent variable (Lo & Andrews, 2015). The results of these prior predictive checks

revealed that the priors were adequate, and that the ex-Gaussian distribution was more

appropriate than the Gaussian one (see Appendix C), converging with Rodríguez-Ferreiro

et al. (2020). Therefore, the ex-Gaussian distribution was used in the final models.

Prior sensitivity analysis. In the main analysis, the informative,

weakly-informative and diffuse priors were used in separate models. In other words, in each

model, all priors had the same degree of informativeness (as done in Pregla et al., 2021;

Rodríguez-Ferreiro et al., 2020; Stone et al., 2021; Stone et al., 2020). In this way, a prior

sensitivity analysis was performed to acknowledge the likely influence of the priors on the

posterior distributions—that is, on the results (Lee & Wagenmakers, 2014; Schoot et al.,
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Figure 1
Priors used in the three studies. The green vertical rectangle shows the range of plausible
effect sizes based on previous studies and on our frequentist analyses. In the informative
priors, around 95% of the values fall within the range.
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2021; Stone et al., 2020).

Posterior distributions. Posterior predictive checks were performed to assess

the consistency between the observed data and new data predicted by the posterior

distributions (Schoot et al., 2021). These checks are available in Appendix C.

Convergence. When convergence was not reached in a model, as indicated by R̂

> 1.01 (Schoot et al., 2021; Vehtari et al., 2021), the number of iterations was increased

and the random slopes for covariates were removed (Brauer & Curtin, 2018). The resulting

random effects in these models were largely the same as those present in the frequentist

models. The only exception concerned the models of the lexical decision study. In the

frequentist model for the latter study, the random slopes for covariates were removed due

to convergence warnings, whereas in the Bayesian analysis, these random slopes did not

have to be removed as the models converged, thanks to the large number of iterations that

were run. In the lexical decision study, it was possible to run a larger number of iterations

than in the two other studies, as the lexical decision data set had fewer observations,

resulting in faster running.

The Bayesian models in the semantic decision study could not be made to converge,

and the final results of these models were not valid. Therefore, those estimates are not

shown in the main text, but are available in Appendix E.

Statistical power analysis

Power curves based on Monte Carlo simulations were performed for most of the

effects of interest using the R package ‘simr’, Version 1.0.5 (Green & MacLeod, 2016).

Obtaining power curves for a range of effects in each study allows for a comprehensive

assessment of the plausibility of the power estimated for each effect.

In each study, the item-level sample size—i.e., the number of words—was not

modified. Therefore, to plan the sample size for future studies, these results must be

considered under the assumptions that the future study would apply a statistical method

similar to ours—namely, a mixed-effects model with random intercepts and slopes—, and

that the analysis would encompass at least as many stimuli as the corresponding study
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(numbers detailed in each study below). P values were calculated using the Satterthwaite

approximation for degrees of freedom (Luke, 2017).

Monte Carlo simulations consist of running the statistical model a large number of

times, under slight, random variations of the dependent variable (Green & MacLeod, 2016;

for a comparable approach, see Loken & Gelman, 2017). The power to detect each effect of

interest is calculated by dividing the number of times that the effect is significant by the

total number of simulations run. For instance, if an effect is significant on 85 simulations

out of 100, the power for that effect is 85% (Kumle et al., 2021). The sample sizes tested in

the semantic priming study ranged from 50 to 800 participants, whereas those tested in the

semantic decision and lexical decision studies ranged from 50 to 2,000 participants. These

sample sizes were unequally spaced to limit the computational requirements. They

comprised the following: 50, 100, 200, 300, 400, 500, 600, 700, 800, 1,200, 1,600 and 2,000

participants.8 The variance of the results decreases as more simulations are run. In each of

our three studies, 200 simulations (as in Brysbaert & Stevens, 2018) were run for each

effect of interest and for each sample size under consideration. Thus, for a power curve

examining the power for an effect across 12 sample sizes, 2,400 simulations were run.

Power analyses require setting an effect size for each effect. Often, it is difficult to

determine the effect size, as the amount and the scope of relevant research are usually finite

and biased (Albers & Lakens, 2018; Gelman & Carlin, 2014; Kumle et al., 2021). In some

power analyses, the original effect sizes from previous studies have been adopted without

any modification (e.g., Pacini & Barnard, 2021; Villalonga et al., 2021). In contrast, some

authors have opted to reduce the previous effect sizes to account for two intervening

factors. First, publication bias and insufficient statistical power cause published effect sizes

to be inflated (Brysbaert, 2019; Loken & Gelman, 2017; Open Science Collaboration, 2015;

Vasishth, Mertzen, et al., 2018; Vasishth & Gelman, 2021). Second, over the course of the

research, a variety of circumstances could create differences between the planned study and

the studies that were used in the power analysis. Some of these differences could be

foreseeable—for instance, if they are due to a limitation in the literature available for the

8 For the semantic priming study, the remaining sample sizes up to 2,000 participants have not finished
running yet. Upon finishing, they will be reported in this manuscript.
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power analysis—, whereas other differences might be unforeseeable and could go unnoticed

(Barsalou, 2019; Noah et al., 2018). Reducing the effect size in the power analysis leads to

an increase of the sample size of the planned study (Brysbaert & Stevens, 2018; Green &

MacLeod, 2016; Hoenig & Heisey, 2001). The reduced effect size—sometimes dubbed the

smallest effect size of interest—is often set with a degree of arbitrariness. In previous

studies, Fleur et al. (2020) applied a reduction of 1/8 (i.e., 12.5%), whereas Kumle et al.

(2021) applied a 15% reduction. In the present study, a reduction of 20% was applied to

every effect in the power analysis. By comparison with the power analyses reviewed in this

paragraph, the present reduction will lead to a more conservative estimate of required

sample sizes. However, after considering the precedents of small samples and publication

bias reviewed above, a 20% reduction is arguably a reasonable safeguard. Indeed, a

posteriori, the results of our power analyses suggested that the 20% reduction had not been

excessive, as some of the effects examined were detectable with small sample sizes.

Both the primary analysis and the power analysis were performed in R (R Core

Team, 2021). Version 4.0.2 was used for the frequentist analysis, Version 4.1.0 was used for

the Bayesian analysis, and Version 4.1.2 was used for fast operations such as data

preprocessing and plotting. Given the complexity of these analyses, all the statistical and

the power analyses were run on the High-End Computing facility at Lancaster University.9

Study 2.1: Semantic priming

The core data set in this study was that of the Semantic Priming Project

(Hutchison et al., 2013; also see Yap et al., 2017). The study of Hutchison et al. (2013)

comprised two tasks: lexical decision and naming. We limited our analysis to the lexical

decision task because it was more relevant to a subsequent study that we were planning. In

the lexical decision task, participants judged whether strings of letters constituted real

9 Information about this facility is available at
https://answers.lancaster.ac.uk/display/ISS/High+End+Computing+%28HEC%29+help. Even though
analysis jobs were run in parallel, some of the statistical analyses took four months to complete
(specifically, one month for the final model to run, which was delayed due to three reasons: limited
availability of machines, occasional cancellations of jobs to allow maintenance work on the machines, and
lack of convergence of the models). Furthermore, the power analysis for the semantic priming study took
six months (specifically, two months of running, with delays due to the limited availability of machines and
occasional cancellations of jobs).
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words (e.g., building) or nonwords (e.g. gop). Importantly, in each trial, the target word

that participants assessed was preceded by a prime word. Participants were only required

to provide a response regarding the target word. The characteristic feature of the semantic

priming paradigm is the analysis of responses to the targets as a function of the semantic

relationship between the primes and the targets (Brunellière et al., 2017; de Wit &

Kinoshita, 2015; Hoedemaker & Gordon, 2014).

In some studies, the association between prime and target words has been

investigated in terms of related versus unrelated pairs (Lam et al., 2015; Pecher et al.,

1998; Trumpp et al., 2013) and—in other studies—in terms of first- and second-order

relationships (Hutchison et al., 2013). In contrast to these categorical associations, a third

set of studies have measured the association between the prime and the target words using

continuous estimates of text-based similarity (Günther et al., 2016a, 2016b; Hutchison et

al., 2008; M. N. Jones et al., 2006; Lund et al., 1995; Lund & Burgess, 1996; Mandera et

al., 2017; McDonald & Brew, 2002; Padó & Lapata, 2007; Petilli et al., 2021; Wingfield &

Connell, 2022a). In one of these studies, Mandera et al. (2017) found that computational

measures of similarity outperformed human-based associations at explaining

language-based priming.

Language, vision and SOA

Priming associations beyond the linguistic realm have also been investigated, with

early studies observing perceptual priming effects (Flores d’Arcais et al., 1985; Schreuder et

al., 1984). Yet, those early findings were soon reframed by Pecher et al. (1998), who

conducted a follow-up with an improved design, and observed vision-based priming only

when the task was preceded by another task that required attention to visual features of

concepts (Ostarek & Huettig, 2017; also see Yee et al., 2012). Furthermore, two studies

have failed to observe vision-based priming (Hutchison, 2003; Ostarek & Huettig, 2017).

Nonetheless, a considerable number of studies have observed perceptual priming,

even in the absence of a pretask. A set of these studies used the Conceptual Modality

Switch paradigm, in which the primes and the targets are presented in separate,

consecutive trials—e.g., Loud Welcome → Fine Selection (Bernabeu et al., 2017; J. Collins
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et al., 2011; Hald et al., 2011, 2013; Louwerse & Connell, 2011; Lynott & Connell, 2009;

Pecher et al., 2003; Trumpp et al., 2013). The other set of studies implemented the more

classic priming manipulation, whereby a prime word is briefly presented before the target

word in each trial—e.g., Welcome → Selection. This design is more relevant to our present

study, as it was used in the study we are revisiting (Hutchison et al., 2013). Below, we

review studies that have used the prime → target design.

Lam et al. (2015) conducted a semantic priming experiment containing a lexical

decision task, in which participants were instructed to assess whether the prime word and

the target word in each trial were both real words. The semantic priming manipulation

consisted of the following types of associations between the prime and the target words: (1)

semantic association (e.g., bolt → screwdriver), (2) action association (e.g., housekey →

screwdriver), (3) visual association (e.g., soldering iron → screwdriver), and (4) no

association (e.g., charger → screwdriver). In addition, the following SOAs were compared:

500, 650, 800 and 1,400 ms. First, Lam et al. observed priming effects of the semantic type

with all SOAs. Second, the authors observed action-based priming with the SOAs of 500,

650 and 1,400 ms. Last, they observed vision-based priming only with the SOA of 1,400

ms. Overall, semantic—i.e., language-based—priming was more prevalent than visual and

action priming. The greater role of language-based information converges with other

semantic priming studies (Bottini et al., 2016; Lam et al., 2015; Pecher et al., 1998; Petilli

et al., 2021), as well as with studies that used other paradigms (Banks et al., 2021; Kiela &

Bottou, 2014; Louwerse et al., 2015).

Similarly, the results of Lam et al. (2015) regarding the time course of

language-based and vision-based priming were consistent with a wealth of literature

observing that the influence of perceptual systems, such as vision, peaks later than the

influence of the language system (Barsalou et al., 2008; Louwerse & Connell, 2011; Santos

et al., 2011). For instance, studies using electroencephalography have observed perceptual

priming effects within 300 ms from the word onset. Thereafter, the perceptual priming

effect increased (Amsel et al., 2014; Bernabeu et al., 2017), or it stabilised (Kiefer et al.,

2022), or fluctuated (Amsel, 2011). Overall, these patterns reveal a gradual accumulation
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of information throughout word processing (also see Hauk, 2016), which is consistent with

the integration of contextual information (see Hald et al., 2006).

In a more recent study, Petilli et al. (2021) revisited the data of Hutchison et al.

(2013) using new variables that indexed language-based and vision-based associations

between the prime and the target words. These variables had two important

characteristics: (1) they were continuous rather than categorical (see Cohen, 1983; Günther

et al., 2016a; Mandera et al., 2017), and (2) they were not dependent on human ratings (cf.

Hutchison et al., 2008, 2013; Lam et al., 2015; Pecher et al., 1998). By this means, Petilli

et al. avoided the circularity problem (rarely addressed in studies) that arises (or may

arise) when human-based ratings are used to explain human behaviour.

Petilli et al. (2021) operationalised word co-occurrence using text-based similarity

(Mandera et al., 2017). Next, to operationalise vision-based similarity, the authors

obtained images from ImageNet corresponding to each word (a minimum of 100 images per

word), and trained vector representations on those images using neural networks (for

related work, see Roads & Love, 2020). The resulting computational measure of

vision-based similarity was then validated against human-based ratings (Pecher et al.,

1998), with a satisfactory result. In a concrete demonstration, Petilli et al. show how

vision-based similarity correctly concluded that drills were more visually similar to pistols

than to screwdrivers, showing that the measure was not misled by functional similarity. In

conclusion, using language-based similarity and vision-based similarity, Petilli et

al. investigated language-based and vision-based priming in two tasks—lexical decision and

naming—and with both a short and a long SOA.

In lexical decision, the largest effect observed by Petilli et al. (2021) was that of

language-based priming with the short SOA (200 ms). The second largest effect was that of

language-based priming with the long SOA (1,200 ms). Next, the weakest, significant effect

was that of vision-based priming with the short SOA. Last, there was no effect of

vision-based priming with the long SOA. Petilli et al. explained the absence of vision-based

priming with the long SOA by contending that visual activation had likely decayed before

participants processed the target words (also see Yee et al., 2011), owing to the limited
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semantic processing required for lexical decision (also see Balota & Lorch, 1986; Becker et

al., 1997; de Wit & Kinoshita, 2015; Joordens & Becker, 1997; Ostarek & Huettig, 2017).

Therefore, the authors suggested that perceptual simulation does not peak before

language-based processing in lexical decision, contrasting with the results of Lam et al.

(2015) and with the results found in other tasks (Louwerse & Connell, 2011; Santos et al.,

2011; Simmons et al., 2008; also see Barsalou et al., 2008).

In the naming task, the largest effect observed by Petilli et al. (2021) was that of

language-based priming with the long SOA. The second largest effect was that of

language-based priming with the short SOA. Last, there was no effect of vision-based

priming with either SOA. This finding contrasts with Connell and Lynott (2014a), who

found facilitatory effects of visual strength in both lexical decision and naming. Petilli et

al. explained the lack of vision-based priming in the naming task by alluding to the lower

semantic depth of this task—compared to lexical decision—, and the mixture of visual and

auditory processing in this task (also see Connell & Lynott, 2014a).

In conclusion, there is mixed evidence regarding the time course of language-based

and vision-based information in conceptual processing, and particularly in semantic

priming. First, regarding language, previous research predicts that language-based priming

will have a larger effect with the short SOA than with the long one (Lam et al., 2015;

Petilli et al., 2021). Second, regarding vision, three hypotheses are available: (a) more

vision-based priming with the long SOA (Louwerse & Connell, 2011; Santos et al., 2011;

Simmons et al., 2008; also see Barsalou et al., 2008), (b) vision-based priming only with the

short SOA (Petilli et al., 2021), and (c) no vision-based priming (Hutchison, 2003; Ostarek

& Huettig, 2017; Pecher et al., 1998; Yee et al., 2012).

Language, vision and vocabulary size

Next, we turn to considering the role of participants’ vocabulary size with respect to

language-based and vision-based information (this recaps the general Hypotheses section).

First, three hypotheses exist the interaction with language. On the one hand, some

research predicts a larger effect of language-based priming in higher-vocabulary

participants (Yap et al., 2017; also see Connell, 2019; Landauer et al., 1998; Louwerse et
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al., 2015; Paivio, 1990; Pylyshyn, 1973). On the other hand, other research has found the

opposite pattern (Yap et al., 2009; also see Yap et al., 2012). Also relevant to these mixed

findings is the notion that vocabulary knowledge is associated with increased attention to

task-relevant variables (Pexman & Yap, 2018). We hypothesised that language-based

information—represented by language-based similarity in this study—was indeed

important for present task, given its importance across the board (Banks et al., 2021; Kiela

& Bottou, 2014; Lam et al., 2015; Louwerse et al., 2015; Pecher et al., 1998; Petilli et al.,

2021). Accordingly, the relevance hypothesis predicted that higher-vocabulary participants

would present a larger priming effect.

To our knowledge, no previous studies have investigated the interaction between

vision-based information and participants’ vocabulary size. We entertained two hypotheses:

(a) that lower-vocabulary participants would be more sensitive to visual strength than

higher-vocabulary participants, thereby compensating for the disadvantage on the language

side, and (b) that this interaction effect would be absent.

The present study

In the present study, we expanded on Petilli et al. (2021) by examining the role of

participants’ vocabulary size. In other regards, we used the same primary data set

(Hutchison et al., 2013), and a language-based similarity measure that was very similar to

that used by Petilli et al. (also created by Mandera et al., 2017). In contrast, our

vision-based predictors differed. Whereas Petilli et al. used a human-independent measure

trained on images (see description above), we calculated the difference in visual strength

(Lynott et al., 2020) between the prime and the target word in each trial.10

Methods

Data set

The data set was trimmed by removing rows that lacked values on any variable, and

by also removing RTs that were more than 3 standard deviations away from the mean. The

10 These measures are compared at the end of the Results section.
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standard deviation trimming was performed within participants, within sessions and within

SOA conditions, as done in the Semantic Priming Project (Hutchison et al., 2013). The

resulting data set contained 496 participants, 5,943 prime–target pairs and 345,666 RTs.

On average, there were 697 prime–target pairs per participant (SD = 33.34), and

conversely, 58 participants per prime–target pair (SD = 4.25).

Variables

While the variables are outlined in the general introduction, a few further details

are provided below regarding some of them.

• Vocabulary size. The test used by Hutchison et al. (2013) comprised a synonym

test, an antonym test, and an analogy test, all three extracted from the

Woodcock–Johnson III diagnostic reading battery (Woodcock et al., 2001). We

operationalised the vocabulary measure as the mean score across the three tasks per

participant.

• Language-based similarity. This measure was calculated using a semantic space

from Mandera et al. (2017), which the authors found to be the second-best predictor

(R2 = .465) of the semantic priming effect in the lexical decision task of Hutchison et

al. (2013) (we could not use the best semantic space, R2 = .471, owing to

computational limitations). The second-best semantic space (see first row in Table 5

in Mandera et al., 2017) was based on lemmas from a subtitle corpus, and was

processed using a Continuous Bag Of Words model. It had 300 dimensions and a

window size of six words. The R package ‘LSAfun’ (Günther et al., 2015) was used to

import this variable.11

• Stimulus onset asynchrony (SOA). Following Brauer and Curtin (2018), the

categories of this factor were recoded as follows: 200 ms = -0.5, 1,200 ms = 0.5.

A few details regarding the covariates follow.

11 Despite the name of the package, the measure we used was not based on Latent Semantic Analysis.
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• Attentional control (Hutchison et al., 2013) was included as a measure akin to

general cognition, and specifically as a covariate of vocabulary size (Ratcliff et al.,

2010). The role of attentional control in semantic priming was evidenced by Yap et

al. (2017). Attentional control comprised three attention-demanding tasks, namely,

operation span, Stroop and antisaccade (Hutchison et al., 2013).

• Lexical covariates (see Appendix A): word frequency and orthographic

Levenshtein distance (Balota et al., 2007).

• Word concreteness (Brysbaert et al., 2014), used as a covariate of visual strength.

Figure 2 shows the correlations among the predictors and the dependent variable.

RT

Vocabulary size

Attentional control

Language-based similarity

Visual-strength difference

Word-concreteness difference

Word frequency

Number of syllables

.00 .00 -.05 .01 .01 -.16 .12

.36 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00

.01 .02 -.12 .05

.54 .06 .03

.12 .09

-.32

Figure 2
Zero-order correlations in the semantic priming study.

Diagnostics for the frequentist analysis

The model presented convergence warnings. To avoid removing important random

slopes, which could increase the Type I error rate—i.e., false positives (Brauer & Curtin,

2018; Singmann & Kellen, 2019), we examined the model after refitting it using seven

optimisation algorithms through the ‘allFit’ function of the R package ‘lme4’ (Bates et al.,

2021). The results showed that all optimisers produced virtually identical means for all

effects, suggesting that the convergence warnings were not consequential (Bates et al.,

2021; see Appendix B).
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The residual errors were not normally distributed, and attempts to mitigate this

deviation proved unsuccessful (see Appendix B). However, this is not likely to have posed a

major problem, as mixed-effects models are fairly robust to deviations from normality

(Knief & Forstmeier, 2021; Schielzeth et al., 2020). Last, the model did not present

multicollinearity problems, with all variance inflation factors (VIF) below 2 (see Dormann

et al., 2013; Harrison et al., 2018).

Diagnostics for the Bayesian analysis

Three Bayesian models were run that were respectively characterised by

informative, weakly-informative and diffuse priors. In each model, 16 chains were used. In

each chain, 1,500 warmup iterations were run, followed by 4,500 post-warmup iterations.

Thus, a total of 72,000 post-warmup draws were produced over all the chains.

The maximum R̂ value for the fixed effects across the three models was 1.00,

suggesting that these parameters had converged (Schoot et al., 2021; Vehtari et al., 2021).

In contrast, the maximum R̂ value for the random effects was 1.13, slightly exceeding the

1.01 threshold (Vehtari et al., 2021). Since the interest of the present research is on the

fixed effects, and the random effects were very close to convergence, the present model is

valid.

The results of the posterior predictive checks were sound (see Appendix C),

indicating that the posterior distributions were sufficiently consistent with the observed

data. Furthermore, in the prior sensitivity analysis, the results were virtually identical with

the three priors that were considered (refer to the priors in Figure 1 above; to view the

results in detail, see Appendix E).

Results of Study 2.1

Table 1 presents the results. The fixed effects explained 4.22% of the variance, and

the random effects explained 11.01% (Nakagawa et al., 2017). It is reasonable that random

effects explain more variance, as they involve a far larger number of estimates for each

effect. That is, whereas each fixed effect is formed of one estimate, the by-item random

slopes for an individual difference variable—such as vocabulary size—comprise as many
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estimates as the number of stimulus items (in this study, the stimuli refer to the

prime–target pairs).12 Conversely, the by-participant random slopes for an item-level

variable—such as language-based similarity—comprise as many estimates as the number of

participants.

Both language-based similarity and visual-strength difference produced significant

main effects. As expected, their effects had opposite directions. On the one hand, higher

values of language-based similarity facilitated participants’ performance, as reflected in

shorter RTs. On the other hand, higher values of visual-strength difference led to longer

RTs. Furthermore, language-based similarity interacted with vocabulary size and with

SOA. There were no effects of participants’ gender (see interaction figures below).

The effect sizes of language-based similarity and its interactions were larger than

those of visual-strength difference. Figure 3 displays the frequentist and the Bayesian

estimates, which are broadly similar. The Bayesian estimates are from the

weakly-informative prior model. The estimates of the two other models, based on

informative and diffuse priors, were virtually identical to these (see Appendix E).

12 For future reference, it should be noted that, in Studies 2.2 and 2.3, the stimuli are the stimulus words,
as there are no prime words in those studies.
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Table 1
Frequentist model for the semantic priming study.

β SE 95% CI t p

(Intercept) 0.00 0.00 [0.00, 0.01] 1.59 .112
Individual differences

Attentional control 0.00 0.00 [0.00, 0.00] -0.56 .577
Vocabulary size a 0.00 0.00 [0.00, 0.00] 0.02 .987
Gender a 0.00 0.00 [0.00, 0.00] -0.03 .979

Target-word lexical covariates
Word frequency -0.16 0.00 [-0.16, -0.15] -49.40 <.001
Number of syllables 0.07 0.00 [0.07, 0.08] 22.81 <.001

Prime–target relationship
Word-concreteness difference 0.01 0.00 [0.01, 0.02] 3.48 .001
Language-based similarity b -0.08 0.00 [-0.08, -0.07] -22.44 <.001
Visual-strength difference b 0.01 0.00 [0.01, 0.02] 4.18 <.001

Task condition
Stimulus onset asynchrony (SOA) b 0.06 0.01 [0.04, 0.07] 7.47 <.001

Interactions
Word-concreteness difference ×

Vocabulary size 0.00 0.00 [0.00, 0.01] 1.31 .189

Word-concreteness difference × SOA 0.00 0.00 [0.00, 0.01] 2.57 .010
Word-concreteness difference × Gender 0.00 0.00 [-0.01, 0.00] -0.97 .332
Language-based similarity ×

Attentional control -0.01 0.00 [-0.01, 0.00] -2.46 .014

Visual-strength difference ×
Attentional control 0.00 0.00 [0.00, 0.00] 0.24 .810

Language-based similarity ×
Vocabulary size -0.01 0.00 [-0.01, 0.00] -2.34 .020

Visual-strength difference ×
Vocabulary size 0.00 0.00 [-0.01, 0.00] -1.37 .172

Language-based similarity × Gender 0.00 0.00 [-0.01, 0.00] -0.79 .433
Visual-strength difference × Gender 0.00 0.00 [0.00, 0.01] 1.46 .144
Language-based similarity × SOA b 0.01 0.00 [0.00, 0.01] 3.22 .001
Visual-strength difference × SOA b 0.00 0.00 [-0.01, 0.00] -2.25 .025

Note. β = Estimate based on z-scored predictors; SE = standard error;
CI = confidence interval. Shaded rows contain covariates. Some interactions are
split over two lines, with the second line indented.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Figure 4-a shows the significant interaction between language-based similarity and

vocabulary size, whereby higher-vocabulary participants presented a greater benefit from

the language-based similarity between prime and target words. This interaction replicates

the results of Yap et al. (2017), who analysed the same data set but using a categorical

measure of similarity instead. Indeed, this replication is noteworthy as it holds in spite of

some methodological differences between the studies. First, Yap et al. (2017)

operationalised the priming effect as a categorical difference between related and unrelated

prime–target pairs, which were based on association ratings produced by people (Nelson et

al., 2004). In contrast, the present study applied a continuous measure of relatedness—i.e.,

cosine similarity—, which is more precise and may thus afford more statistical power

(Mandera et al., 2017; Petilli et al., 2021). Therefore, this interaction demonstrates the

consistency between human ratings and computational approximations to meaning

(Charbonnier & Wartena, 2019, 2020; Günther et al., 2016b; Louwerse et al., 2015;

Mandera et al., 2017; Petilli et al., 2021; Solovyev, 2021; Wingfield & Connell, 2022a). The

second difference between the present study and Yap et al. (2017) is that Yap et al. (2017)

performed a correlational analysis, whereas the present analysis used maximal

mixed-effects models that included several covariates to measure the effects of interest as

rigorously as possible.

Figure 4-b presents the non-significant interaction between visual-strength difference

and vocabulary size.13 Albeit a non-significant interaction, the effect of visual-strength

difference was larger in lower-vocabulary participants.

Figure 5 shows that the effects of language-based similarity and visual-strength

difference were both larger with the short SOA. However, whereas the effect of

language-based similarity was present with both SOAs (i.e., 200 ms and 1,200 ms), the

effect of visual-strength difference was almost exclusive to the the long SOA. These results

are consistent with Petilli et al. (2021), whereas they contrast with previous findings

regarding the slower pace of the visual system in semantic priming (Lam et al., 2015) and

in other paradigms (Louwerse & Connell, 2011).

13 All interaction plots across the three studies are based on the frequentist models. Further interaction
plots available in Appendix D.
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Visual-strength difference × SOA

Language-based similarity × SOA

Visual-strength difference × Gender

Language-based similarity × Gender

Visual-strength difference × Vocabulary size

Language-based similarity × Vocabulary size

Visual-strength difference × Attentional control

Language-based similarity × Attentional control

Word-concreteness difference × Gender

Word-concreteness difference × SOA

Word-concreteness difference × Vocabulary size

Stimulus onset asynchrony (SOA)

Visual-strength difference

Language-based similarity

Gender

Vocabulary size

Attentional control

Word-concreteness difference

Number of target-word syllables

Target-word frequency

(Intercept)

-0.15 -0.10 -0.05 0.00 0.05

Effect size (β)

Frequentist analysis

Bayesian analysis

Figure 3
Estimates for the semantic priming study. The frequentist means (represented by red points)
are flanked by 95% confidence intervals. The Bayesian means (represented by blue vertical
lines) are flanked by 95% credible intervals in light blue.
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Figure 4
Interactions of vocabulary size with language-based similarity (panel a) and with visual-
strength difference (panel b). Vocabulary size is constrained to deciles (10 sections) in this
plot, whereas in the statistical analysis it contained more values within the current range. n
= number of participants contained between deciles.
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Figure 5
Interactions of stimulus onset asynchrony (SOA) with language-based similarity (panel a) and
with visual-strength difference (panel b) in the semantic priming study. SOA was analysed
using z-scores, but for clarity, the basic labels are used in the legend.
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Figure 6 shows the non-significant interactions of gender with language-based

similarity and with visual-strength difference.
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Figure 6
Interactions of gender with language-based similarity (panel a) and with visual-strength dif-
ference (panel b) in the semantic priming study. Gender was analysed using z-scores, but
for clarity, the basic labels are used in the legend.

Human-based and computational measures of visual information

Next, we reflected on the adequacy of visual-strength difference as a measurement

instrument, as it had never (to our knowledge) been used before in the study of semantic
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priming. Even though the effect of this variable on task performance was—as

expected—inhibitory (i.e., higher values of this variable leading to longer RTs), we were

concerned about the low correlation between visual-strength difference and language-based

similarity (r = .01). First, the negligible size of this correlation raised concerns, as we

expected a larger and negative correlation. Second, Petilli et al. (2021) had found a

correlation of r = .50 between vision-based similarity and language-based similarity. This

prompted us to compare the performance of our measure—i.e., visual-strength

difference—to that of Petilli et al.—i.e., vision-based similarity.

For this purpose, we first subsetted our previous data set to ensure that all trials

contained data from all relevant variables—i.e., from all the existing variables and from the

newly-added vision-based similarity from Petilli et al. (2021). This process resulted in

the loss of 83% of trials, owing to the strict selection criteria that had been applied by

Petilli et al. in the creation of their variable—for instance, both the target and the prime

word had to be associated to at least 100 pictures in ImageNet. The rest of the

preprocessing involved the same steps as the main analysis (detailed in Methods). The

resulting data set contained 496 participants, 1,091 prime–target pairs and 254,140 RTs.

On average, there were 128 prime–target pairs per participant (SD = 10.37), and

conversely, 58 participants per prime–target pair (SD = 4.90).

Figure 7 shows the correlations among the predictors and the dependent variable.

Diagnostics for the frequentist analysis

The model presented convergence warnings. To avoid removing important random

slopes, which could increase the Type I error rate—i.e., false positives (Brauer & Curtin,

2018; Singmann & Kellen, 2019), we examined the model after refitting it using seven

optimisation algorithms through the ‘allFit’ function of the ‘lme4’ package (Bates et al.,

2021). The results showed that all optimisers produced virtually identical means for all

effects, suggesting that the convergence warnings were not consequential (Bates et al.,

2021; see Appendix B).

The residual errors were not normally distributed, and attempts to mitigate this
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Figure 7
Zero-order correlations in the semantic priming data set that included vision-based similarity.

deviation proved unsuccessful (see Appendix B). However, this is not likely to have posed a

major problem, as mixed-effects models are fairly robust to deviations from normality

(Knief & Forstmeier, 2021; Schielzeth et al., 2020). Last, the model did not present

multicollinearity problems, with all VIFs below 2 (see Dormann et al., 2013; Harrison et

al., 2018).

Results. Table 2 presents the results. Due to space, the covariates are shown in

Table 3. The fixed effects explained 3.53% of the variance, and the random effects

explained 18.47% (Nakagawa et al., 2017; for an explanation of this difference, see

Results of Study 2.1). Figure 8 displays the frequentist estimates of the effects of interest

(Bayesian estimates not computed due to time constraints).
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Table 2
Effects of interest in the semantic priming model that included vision-based similarity.

β SE 95% CI t p

(Intercept) 0.01 0.01 [-0.01, 0.02] 0.90 .370
Individual differences

Vocabulary size a 0.00 0.00 [-0.01, 0.01] 0.21 .834
Gender a 0.00 0.00 [-0.01, 0.01] -0.05 .962

Prime–target relationship
Language-based similarity b -0.07 0.01 [-0.09, -0.06] -8.33 <.001
Visual-strength difference b 0.03 0.01 [0.01, 0.04] 3.04 .002
Vision-based similarity b -0.02 0.01 [-0.04, -0.01] -2.55 .011

Task condition
Stimulus onset asynchrony (SOA) b 0.06 0.01 [0.04, 0.08] 6.80 <.001

Interactions
Language-based similarity ×

Vocabulary size -0.01 0.01 [-0.02, 0.01] -0.96 .339

Visual-strength difference ×
Vocabulary size -0.01 0.01 [-0.02, 0.01] -1.02 .309

Vision-based similarity ×
Vocabulary size 0.00 0.01 [-0.01, 0.01] -0.01 .991

Language-based similarity × Gender 0.00 0.01 [-0.02, 0.01] -0.75 .456
Visual-strength difference × Gender -0.01 0.01 [-0.02, 0.01] -1.05 .294
Vision-based similarity × Gender 0.00 0.01 [-0.01, 0.01] 0.39 .696
Language-based similarity × SOA b 0.00 0.00 [0.00, 0.01] 0.87 .382
Visual-strength difference × SOA b -0.01 0.00 [-0.02, 0.00] -2.60 .010
Vision-based similarity × SOA b 0.01 0.00 [0.00, 0.01] 1.28 .201

Note. β = Estimate based on z-scored predictors; SE = standard error;
CI = confidence interval. Covariates shown in next table due to space. Some
interactions are split over two lines, with the second line indented.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Table 3
Covariates in the semantic priming model that included vision-based similarity.

β SE 95% CI t p

Individual difference covariate
Attentional control 0.00 0.00 [-0.01, 0.00] -1.06 .288

Target-word lexical covariates
Word frequency -0.15 0.01 [-0.17, -0.14] -21.97 <.001
Number of syllables 0.02 0.01 [0.01, 0.04] 3.54 <.001

Prime–target covariate
Word-concreteness difference 0.02 0.01 [0.01, 0.04] 2.73 .006

Covariate interactions
Word-concreteness difference ×

Vocabulary size -0.01 0.00 [-0.01, 0.00] -1.15 .252

Word-concreteness difference × SOA 0.01 0.00 [0.01, 0.02] 5.64 <.001
Word-concreteness difference × Gender 0.01 0.00 [0.00, 0.01] 1.34 .179
Language-based similarity ×

Attentional control 0.00 0.00 [-0.01, 0.01] -0.91 .362

Visual-strength difference ×
Attentional control 0.00 0.00 [-0.01, 0.01] 0.71 .477

Vision-based similarity ×
Attentional control 0.00 0.00 [-0.01, 0.01] 0.80 .423

Note. β = Estimate based on z-scored predictors; SE = standard error;
CI = confidence interval. Some interactions are split over two lines, with the
second line indented.
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Figure 8
Means and 95% confidence intervals for the effects of interest in the semantic priming model
that included vision-based similarity.

The results revealed an effect of the human-based measure, visual-strength

difference (as in the main analysis above), along with a smaller effect of the

computational measure, vision-based similarity. There was an important difference

between these measures regarding the interaction with SOA. Whereas visual-strength

difference had a larger effect with the short SOA, vision-based similarity did not interact

with SOA, contrary to the results of Petilli et al. (2021). This difference was not due to

collinearity between these measures (r = -.04). Also importantly, both measures appeared
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to be valid based on their correlations with language-based similarity and with word

concreteness (Figure 7). We reflect on this result in the discussion.

Statistical power analysis

Power curves were performed for most effects of interest in the main model. This

was done using the main model, not the follow-up that included vision-based similarity.

Figures 9 and 10 show the estimated power for some main effects and interactions of

interest as a function of the number of participants. To plan the sample size for future

studies, these results must be considered under the assumptions that the future study

would apply a statistical method similar to ours—namely, a mixed-effects model with

random intercepts and slopes—, and that the analysis would encompass at least as many

prime–target pairs as the current study, namely, 5,943 (distributed in various blocks across

participants, not all being presented to every participant). Furthermore, it is necessary to

consider each figure in detail. Here, we provide a summary. First, detecting the main effect

of language-based similarity—which had a strong effect on RTs—would require 50

participants. Second, detecting the interaction between language-based similarity and

SOA—which was a considerably weaker effect—would require 600 participants. Last, the

other effects would require more than 1,000 participants—or, in the case of gender

differences, many more than that.

Discussion of Study 2.1

The results revealed a significant, facilitatory effect of language-based similarity

and a smaller but significant, inhibitory effect of visual-strength difference. That is, a

greater language-based similarity resulted in shorter RTs, whereas a greater visual-strength

difference resulted in larger RTs. There was also a sizable effect of stimulus onset

asynchrony (SOA), with shorter RTs in the short SOA condition (200 ms) than in the long

SOA (1,200 ms). Furthermore, there were significant interactions. First, language-based

priming was larger in higher-vocabulary participants than in lower-vocabulary ones.

Second, both language-based priming and vision-based priming were larger with the short

SOA than with the long one. Thus far, these results broadly replicated those of Petilli et

73



0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600 700 800

P
ow

er
Language-based similarity

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600 700 800

Number of participants

Visual-strength difference

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600 700 800

Number of participants

P
ow

er

Vocabulary size

Figure 9
Power curves for some main effects in the semantic priming study.
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Power curves for some interactions in the semantic priming study.

75



al. (2021). It is especially noteworthy that vision-based information had a significant

effect, consistent with some of the previous research (Connell & Lynott, 2014a; Flores

d’Arcais et al., 1985; Petilli et al., 2021; Schreuder et al., 1984), and contrasting with other

research that did not find such an effect (Ostarek & Huettig, 2017) or only observed it after

visually-focussed tasks (Pecher et al., 1998; Yee et al., 2012). Last, no effect of gender was

found. Below, we delve into some other aspects of these results.

The importance of outliers

The interaction between language-based similarity and vocabulary size (Figure 4-a)

was patent in all deciles of vocabulary size but it was clearest among those participants

that were more than one standard deviation away from the mean. Outliers in individual

differences have played important roles in other areas of cognition as well, such as in the

study of aphantasia and hyperphantasia—traits characterised, respectively, by a diminished

and an extraordinary ability to mentally visualise objects (Milton et al., 2021; Zeman et

al., 2020). Such an influence of outliers provides a reason to study more varied samples of

participants when possible. Furthermore, a greater interindividual variation might help

detect the effects of individual differences that have been elusive (e.g., Hedge et al., 2018;

Muraki & Pexman, 2021; Ponari, Norbury, Rotaru, et al., 2018; Rodríguez-Ferreiro et al.,

2020; Rouder & Haaf, 2019).

Human-based and computational measures of vision-based information

Next, in a secondary analysis, we compared the roles of two measures of

vision-based priming. The first measure—visual-strength difference—was

operationalised as the difference in visual strength between the prime word and the target

word in each trial. This difference score was thus based on modality-specific ratings

provided by human participants (Lynott et al., 2020). The second measure—vision-based

similarity—, created by Petilli et al. (2021), was based on vector representations trained

on labelled images from ImageNet. This variable is therefore computational. The effect of

visual-strength difference was slightly larger than that of vision-based similarity. This

result is consistent with some previous findings suggesting that human-based measures
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explained more variance than computational measures (De Deyne et al., 2016, 2019; Gagné

et al., 2016; Schmidtke et al., 2018; cf. Michaelov et al., 2022; Snefjella & Blank, 2020). If

the different degree of human dependence of our two variables were indeed behind the

effect size of each, we would need to consider a related issue. The problem of circularity

was addressed by Petilli et al., who argued that using human-based predictors—such as

ratings—to investigate human behaviour was less valid than using predictors that were

more independent of human behaviour—such as computational measures. On the one

hand, we identify two reasons for skepticism regarding the circularity hypothesis. First, the

underlying basis of all computational measures (e.g., Mandera et al., 2017; Petilli et al.,

2021) is indeed human behaviour, notwithstanding the degree to which this human basis is

filtered by computational methods. Second, we have not found sufficient research

addressing the validity question. Yet, on the other hand, the circularity hypothesis is

important enough to warrant dedicated research. Specifically, future studies could be

conducted to systematically compare the theoretical insights provided by human-based

measures and by computational ones, as well as the effect size achieved by both types.

It is noteworthy that both visual-strength difference and vision-based similarity

have independently proven to be relevant, and arguably valid, considering their correlations

with other measures—especially word-concreteness difference and language-based

similarity—and considering the effects of each measure in semantic priming (see Petilli

et al., 2021). However, the differences between these measures are worthy of attention.

Visual-strength difference was barely correlated with language-based similarity. Conversely,

vision-based similarity was barely correlated with word-concreteness difference (refer to

Figure 7). These results call for an investigation into the underlying composition of

visual-strength difference and vision-based similarity.

Furthermore, whereas visual-strength difference retained its significant interaction

with SOA—also observed in the main analysis presented above—, in contrast, vision-based

similarity did not present such an interaction. The lack of an interaction between

vision-based similarity and SOA contrasts with the results of Petilli et al. (2021), who

found that vision-based similarity was only significant in the short SOA condition. There
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are several possible reasons for this difference, including: (I) a more conservative method in

our current analysis—i.e., a maximal mixed-effects model containing more predictors than

the hierarchical regression performed by Petilli et al.—, and (II) the presence of individual

differences in the present study (i.e., vocabulary size, attentional control and gender),

versus the aggregation performed by Petilli et al.

Last, the interaction between language-based similarity and SOA became

non-significant in this sub-analysis. This difference from the original analysis may have

been caused by the sizable correlation between language-based similarity and vision-based

similarity (r = .49). In this regard, we should notice the large influence of the addition of a

single variable (along with its interactions) into the model.

The influence of the analytical method

Taken together, the sub-analysis that included vision-based similarity offered a

glimpse into the crucial role of analytical choices in the present topic. A previous example

of this influence appeared in a set of studies that used Latent Semantic Analysis (LSA) as

a predictor of semantic priming. Hutchison et al. (2008) operationalised LSA as a

difference score, and did not find an effect of this variable. In contrast, later studies did not

use a difference score and they observed a significant effect (Günther et al., 2016a;

Mandera et al., 2017). We can extrapolate this issue to a very important comparison we

often make—namely, that between language-based and embodied simulation. The

pervasive superiority of language over the other systems (perception, action, emotion and

sociality)—found in the three current studies and in previous ones (Banks et al., 2021;

Kiela & Bottou, 2014; Lam et al., 2015; Louwerse et al., 2015; Pecher et al., 1998; Petilli et

al., 2021)—would be less trustworthy if the instruments that were used to measure the

language system had been far more precise than the instruments used to measure the

embodiment system. In this sense, it is relevant to consider how variables are improved in

research: it is done iteratively, by comparing the performance of different variables.

Critically, the literature contains many comparisons of text-based variables, some dating

back to the 1990s (De Deyne et al., 2013, 2016; Günther et al., 2016a, 2016b; M. N. Jones

et al., 2006; Lund & Burgess, 1996; Mandera et al., 2017; Mikolov et al., 2013; Wingfield &
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Connell, 2022a). In contrast, the work on embodiment variables began more than a decade

afterwards, and it has been less concerned with benchmarking the explanatory power of

variables (but see Vergallito et al., 2020). Instead, this literature contains more

comparisons of different modalities—e.g., visual strength, auditory strength, valence, etc.

(Lynott et al., 2020; Lynott & Connell, 2009; Newcombe et al., 2012). Thus, if linguistic

measures are more precise than embodiment measures due to greater work on the variables,

such a difference could account for a certain portion of the superiority of linguistic

information over embodied information (see Banks et al., 2021; Kiela & Bottou, 2014; Lam

et al., 2015; Louwerse et al., 2015; Pecher et al., 1998; Petilli et al., 2021). Analytical

choices such as the operationalisation of variables and the complexity of statistical models

can greatly influence the conclusions of research. Indeed, our current results and previous

ones suggest that the conclusions of research are inextricable from the method used in each

study (see Barsalou, 2019; Botvinik-Nezer et al., 2020; Perret & Bonin, 2019; E.-J.

Wagenmakers et al., 2022). Therefore, in the medium term, it may pay dividends to

continue examining the influence of analytical choices. Unfortunately, in many research

fields, reflecting on the sensitivity of our analyses might conflict with the incentives of the

system, which may penalise nuanced conclusions in favour of simplified stories. To

overcome such a bias, it may be necessary to devote greater importance to the methodology

in scientific papers—for instance, by commenting on the method in the abstract and by

extending the methods section in the body of the paper. In stark contrast, our current

results should make us question some decisions by scientific publishers such as rendering

the methods section in a smaller font than the results section, or placing the method

section at the end of the paper. In a nutshell, it may be useful to ensure that scientists are

aware that research findings are fundamentally dependent on research methods.

Statistical power analysis

We analysed the statistical power associated with several effects of interest, across

various sample sizes. The results of this power analysis can help determine the number of

participants required to reliably examine each of these effects in a future study.

Importantly, the results assume two conditions. First, the future study would apply a
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statistical method similar to ours—namely, a mixed-effects model with random intercepts

and slopes. Second, the analysis of the future study would encompass at least 5,943

prime–target pairs (distributed in various blocks across participants, not all being

presented to every participant).

First, the results revealed that detecting the main effect of language-based similarity

would require 50 participants. Next, detecting the interaction between language-based

similarity and SOA would require 600 participants. Last, the other effects would require

more than 1,000 participants—or, in the case of gender differences, many more than that.
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Study 2.2: Semantic decision

The semantic decision task probes the role of concreteness in conceptual processing.

Specifically, this task requires participants to classify words as abstract or concrete, which

elicits deeper semantic processing than the task of identifying word forms (i.e., lexical

decision). Researchers then analyse whether the responses can be explained by the sensory

experientiality of the referents—that is, the degree to which they can be experienced

through our senses—and by other variables, such as word frequency. The core data set in

this study was that of the Calgary Semantic Decision Project (Pexman et al., 2017;

Pexman & Yap, 2018). The experimental task is semantic decision, in which participants

judge whether words are primarily abstract (e.g., thought) or concrete (e.g., building).

Research has found that the processing of relatively concrete words relies

considerably on sensorimotor information (Hultén et al., 2021; Kousta et al., 2011;

Vigliocco et al., 2014). In contrast, the processing of relatively abstract words seems to

draw more heavily on information from language (Barca et al., 2020; Duñabeitia et al.,

2009; Snefjella & Blank, 2020), emotion (Kousta et al., 2011; Ponari et al., 2020; Ponari,

Norbury, Rotaru, et al., 2018; Ponari, Norbury, & Vigliocco, 2018; Vigliocco et al., 2014),

interoception (Connell et al., 2018) and social information (Borghi et al., 2022, 2019;

Diveica et al., 2022).

Methods

Data set

The data set was trimmed by removing rows that lacked values on any variable, and

by also removing RTs that were more than 3 standard deviations away from the mean.14

The standard deviation trimming was performed within participants and within trial

blocks, as done in the Calgary Semantic Decision Project (Pexman et al., 2017). The

resulting data set contained 306 participants, 8,927 words and 246,432 RTs. On average,

there were 755 words per participant (SD = 42.05), and conversely, 26 participants per

14 In the removal of missing values, six participants whose gender appeared as ‘NA’ were inadvertently
removed from the data set.
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word (SD = 4.80).

Variables

While the variables are outlined in the general introduction, a few further details

are provided below regarding some of them.

Vocabulary size. In the vocabulary test used by Pexman et al. (2017),

participants were presented with 35 rare words with irregular pronunciations (e.g., gaoled,

ennui), and they were asked to read the words aloud (also see Pexman & Yap, 2018).

When they pronounced a word correctly, it was inferred that they knew the word. This

test was based on NAART35, a short version of the North American Adult Reading Test

(Uttl, 2002).

Word co-occurrence. Wingfield and Connell (2022a) reanalysed the data from

Pexman et al. (2017) using language-based variables that are more related to the language

system than to the visual system. The task used by Pexman et al. was semantic decision,

in which participants assessed whether words were abstract or concrete. Wingfield and

Connell found that the variables that best explained RTs were word co-occurrence

measures. Specifically, one of these variables was the corpus distance between each

stimulus word and the word ‘abstract’. The other variable was the corpus distance between

each stimulus word and the word ‘concrete’. Wingfield and Connell studied these distance

measures in various forms, and found that cosine and correlation distance yielded the best

results. We used the correlation distances following the advice of Kiela and Bottou (2014).

The zero-order correlation between Wingfield and Connell’s (2022) distance to

‘abstract’ and distance to ‘concrete’ was r = .98. To avoid the collinearity between these

variables in the model (Dormann et al., 2013; Harrison et al., 2018), and to facilitate the

analysis of interactions with other variables, we created a difference score by subtracting

the distance to ‘abstract’ from the distance to ‘concrete’. This new variable was named

‘word co-occurrence’. As shown in Figure 11, the correlation between word co-occurrence

and word concreteness was twice as large as the correlation between either form of the

distance and word concreteness. This suggested that the difference score had successfully

encapsulated the information of both distances.

82



Word concreteness

Word co-occurrence

Distance to 'concrete'

Distance to 'abstract'

.56 .16 .25

.06 .24

.98

Figure 11
Zero-order correlations among Wingfield and Connell’s (2022) distances, the difference score
(word co-occurrence) and word concreteness (Brysbaert et al., 2014).

A few details regarding the covariates follow.

• Information uptake was included as a measure akin to general cognition, and

specifically as a covariate of vocabulary size (Ratcliff et al., 2010; also see James et

al., 2018; Pexman & Yap, 2018). Information uptake was effectively the drift rate per

participant in Pexman and Yap (2018). This drift rate measured participants’ ability

to correctly and quickly perform the semantic decision task, in which they classified

words as abstract or concrete (for graphical illustrations, see Lerche et al., 2020; van

Ravenzwaaij et al., 2012). In other words, drift rate measures an individual’s ability

(Lerche et al., 2020; Pexman & Yap, 2018).

• Lexical covariates (see Appendix A): word frequency and orthographic

Levenshtein distance (Balota et al., 2007).

• Word concreteness (Brysbaert et al., 2014): a fundamental variable in the semantic

decision task, in which participants judge whether words are abstract or concrete (for

further considerations, see Bottini et al., 2021). Indeed, owing to the instructions of

the task, word concreteness is likely to be more relevant to the participants’ task

than our effects of interest.

Figure 12 shows the correlations among the predictors and the dependent variable.

Diagnostics for the frequentist analysis

The model presented convergence warnings. To avoid removing important random

slopes, which could increase the Type I error rate—i.e., false positives (Brauer & Curtin,
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Figure 12
Zero-order correlations in the semantic decision study.

2018; Singmann & Kellen, 2019), we examined the model after refitting it using seven

optimisation algorithms through the ‘allFit’ function of the ‘lme4’ package (Bates et al.,

2021). The results showed that all optimisers produced virtually identical means for all

effects, suggesting that the convergence warnings were not consequential (Bates et al.,

2021; see Appendix B).

The residual errors were not normally distributed, and attempts to mitigate this

deviation proved unsuccessful (see Appendix B). However, this is not likely to have posed a

major problem, as mixed-effects models are fairly robust to deviations from normality

(Knief & Forstmeier, 2021; Schielzeth et al., 2020). Last, the model did not present

multicollinearity problems, with all VIFs below 2 (see Dormann et al., 2013; Harrison et

al., 2018).

Diagnostics for the Bayesian analysis

Three Bayesian models were run that were respectively characterised by

informative, weakly-informative and diffuse priors. In each model, 16 chains were used. In

each chain, 2,000 warmup iterations were run, followed by 6,000 post-warmup iterations.

Thus, a total of 96,000 post-warmup draws were produced over all the chains.

The maximum R̂ value for the fixed effects across the three models was 1.42, far

exceeding the 1.01 threshold (Vehtari et al., 2021; also see Schoot et al., 2021). Similarly,
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the maximum R̂ value for the random effects was 1.31. Furthermore, the posterior

predictive checks revealed major divergences between the observed data and the posterior

distributions (see Appendix C). In conclusion, since the Bayesian results were not valid,

they are not shown in the main text, but are available in Appendix E.

Results of Study 2.2

Table 4 presents the results. The fixed effects explained 4.11% of the variance, and

the random effects explained 17.48% (Nakagawa et al., 2017; for an explanation of this

difference, see Results of Study 2.1). Both word co-occurrence and visual strength

produced significant main effects. Higher values of these variables facilitated participants’

performance, as reflected in shorter RTs. Furthermore, visual strength interacted with

vocabulary size. There were no effects of participants’ gender (see interaction figures

below).

The effect sizes of word co-occurrence and its interactions were larger than those of

visual strength. Figure 13 displays these estimates.15

15 Only frequentist estimates shown, as Bayesian ones were not valid (see Appendix E).
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Table 4
Frequentist model for the semantic decision study.

β SE 95% CI t p

(Intercept) 0.05 0.00 [0.04, 0.06] 11.87 <.001
Individual differences

Information uptake 0.00 0.00 [0.00, 0.00] 0.20 .844
Vocabulary size a 0.00 0.00 [-0.01, 0.00] -1.42 .155
Gender a 0.00 0.00 [0.00, 0.00] -0.47 .636

Lexicosemantic covariates
Word frequency -0.12 0.00 [-0.13, -0.12] -28.63 <.001
Orthographic Levenshtein distance -0.01 0.00 [-0.02, 0.00] -3.05 .002
Word concreteness -0.13 0.01 [-0.14, -0.11] -21.39 <.001

Semantic variables
Word co-occurrence b -0.03 0.01 [-0.04, -0.02] -4.48 <.001
Visual strength b -0.02 0.01 [-0.03, -0.01] -2.91 .004

Interactions
Word concreteness × Vocabulary size -0.02 0.00 [-0.03, -0.02] -7.66 <.001
Word concreteness × Gender -0.01 0.00 [-0.02, 0.00] -3.50 <.001
Word co-occurrence × Information uptake 0.01 0.01 [0.00, 0.02] 1.48 .141
Visual strength × Information uptake 0.02 0.01 [0.01, 0.03] 3.05 .003
Word co-occurrence × Vocabulary size 0.01 0.01 [0.00, 0.02] 1.66 .098
Visual strength × Vocabulary size 0.01 0.01 [0.00, 0.02] 2.03 .043
Word co-occurrence × Gender 0.00 0.00 [-0.01, 0.01] 0.86 .393
Visual strength × Gender 0.00 0.00 [-0.01, 0.01] -0.08 .940

Note. β = Estimate based on z-scored predictors; SE = standard error;
CI = confidence interval. Shaded rows contain covariates.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.

Figure 14-a shows the non-significant interaction between word co-occurrence and

vocabulary size, whereby lower-vocabulary participants were more sensitive to word

co-occurrence than higher-vocabulary participants. Next, Figure 14-b shows the significant

interaction between visual strength and vocabulary size, demonstrating that

lower-vocabulary participants were also more sensitive to visual strength. Last, Figure 14-c

shows the significant interaction between word concreteness and vocabulary size, whereby

higher-vocabulary participants were more sensitive to word concreteness than
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Figure 13
Means and 95% confidence intervals for the effects of interest in the semantic decision study.
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lower-vocabulary participants. Word concreteness is likely the most relevant variable for

the semantic decision task, in which participants classify words as abstract or concrete. In

conclusion, these interactions suggest that higher-vocabulary participants were better able

to focus on the most relevant information, whereas lower-vocabulary participants were

sensitive to a greater breadth of information (see Lim et al., 2020; Pexman & Yap, 2018;

Yap et al., 2009, 2012, 2017).
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Figure 14
Interactions of vocabulary size with language-based information (panel a), with visual strength
(panel b) and with word concreteness (panel c) in the semantic decision study. Vocabulary
size is constrained to deciles in this plot, whereas in the statistical analysis it contained more
values within the current range. n = number of participants contained between deciles.
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A continuous measure of word concreteness was used in the present study. In

contrast, Pexman and Yap (2018) split the data set it into a subset with abstract words

and another subset with concrete words, and they analysed these subsets separately.

Pexman and Yap found that high-vocabulary participants were more sensitive to the

relative abstractness of words. Specifically, these participants were faster to classify very

abstract words than mid-abstract ones, thus presenting a reverse concreteness effect (also

see Bonner et al., 2009). Such a reverse effect might stem from the bimodal distributions

that have appeared in concreteness ratings (Brysbaert et al., 2014) and in semantic

decisions (Pexman & Yap, 2018), or it might be due to confounding variables (Hoffman &

Lambon Ralph, 2011). Notwithstanding the bimodal distributions, Troche et al. (2017)

suggested that a continuous analysis remained necessary to study word concreteness (also

see Cohen, 1983). Consistent with this, our present findings demonstrated the sensitivity of

a continuous word concreteness variable to patterns such as the greater role of

task-relevant variables in high-vocabulary participants. In conclusion, the literature and

our findings suggest that the split-data approach and the continuous approach to word

concreteness are both useful. Where it is feasible, the application of both approaches would

provide the greatest information.

Figure 15 shows the interactions with gender. The interactions of interest, in panels

a and b, were non-significant.16

Statistical power analysis

Figures 16 and 17 show the estimated power for some main effects and interactions

of interest as a function of the number of participants. To plan the sample size for future

studies, these results must be considered under the assumptions that the future study

would apply a statistical method similar to ours—namely, a mixed-effects model with

random intercepts and slopes—, and that the analysis would encompass at least as many

words as the current study, namely, 8,927 (distributed in various blocks across participants,

not all being presented to every participant). Furthermore, it is necessary to consider each

figure in detail. Here, we provide a summary. First, detecting the main effect of word

16 Further interaction plots available in Appendix D.
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Figure 15
Interactions of gender with word co-occurrence (panel a), with visual strength (panel b) and
with word concreteness (panel c) in the semantic decision study. Gender was analysed using
z-scores, but for clarity, the basic labels are used in the legend.
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co-occurrence would require 300 participants. Second, detecting the main effect of visual

strength would require 1,200 participants. Third, detecting the interactions of word

co-occurrence and visual strength with vocabulary size would require 1,500 participants.

Last, detecting the other effects would require more than 2,000 participants—or, in the

case of gender differences, many more than that.
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Figure 16
Power curves for some main effects in the semantic decision study.
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Power curves for some interactions in the semantic decision study.
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Discussion of Study 2.2

The results revealed a significant, facilitatory effect of word co-occurrence and a

smaller but significant, facilitatory effect of visual strength. That is, higher values of

these variables resulted in shorter RTs. Furthermore, there were significant interactions.

First, language-based priming was larger in higher-vocabulary participants than in

lower-vocabulary ones. Second, both language-based priming and vision-based priming

were larger with the short SOA than with the long one. Thus far, these results broadly

replicated those of Petilli et al. (2021). As in Study 2.1, vision-based information had a

significant effect. This was to be expected, as semantic decision is likely to engage deeper

semantic processing. Last, no effect of gender was found. Below, we delve into some other

aspects of these results.

Statistical power analysis

We analysed the statistical power associated with several effects of interest, across

various sample sizes. The results of this power analysis can help determine the number of

participants required to reliably examine each of these effects in a future study.

Importantly, the results assume two conditions. First, the future study would apply a

statistical method similar to ours—namely, a mixed-effects model with random intercepts

and slopes. Second, the analysis of the future study would encompass at least 8,927

stimulus words (distributed in various blocks across participants, not all being presented to

every participant).

First, the results revealed that detecting the main effect of word co-occurrence

would require 300 participants. Next, detecting the interactions with vocabulary size would

require 1,500 participants. Last, detecting the other effects would require more than 2,000

participants—or, in the case of gender differences, many more than that.
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Study 2.3: Lexical decision

The core data set in this study was the lexical decision subset of the English

Lexicon Project (ELP; Balota et al., 2007). As in Study 2.1, we limited our analysis to the

lexical decision task because it was more relevant to a subsequent study that we were

planning. The lexical decision task differs from semantic priming and semantic decision in

two important aspects. First, lexical decision is likely to involve less semantic processing

than the other paradigms (Balota & Lorch, 1986; Becker et al., 1997; de Wit & Kinoshita,

2015; Joordens & Becker, 1997; Muraki & Pexman, 2021; Ostarek & Huettig, 2017).

Second, it is more difficult in the lexical decision task to create word-to-word

distance measures to capture language-based and vision-based information. The possibility

of calculating the distance between words in consecutive trials is hindered by the need to

skip trials, owing to the high prevalence of nonword trials throughout the lexical decision

task. Therefore, the measures must be based on each word alone. Accordingly, vision-based

information can be operationalised as the visual strength of each word. Language-based

information could be operationalised as one of several lexical variables. In the present

study, word frequency was chosen as it had the largest effect size out of five candidates—the

other candidates being number of letters, number of syllables, orthographic Levenshtein

distance and phonological Levenshtein distance (see Appendix A). It should also be noted

that word frequency has been found to be more closely related to semantic variables than

to lexical ones, such as word length, orthography and phonology (see Table 4 in Yap et al.,

2012). Another noteworthy feature of word frequency how it relates to vocabulary size

across different paradigms. In lexical decision, the effect of word frequency has been

stronger in higher-vocabulary participants than in lower-vocabulary ones (Lim et al., 2020;

Yap et al., 2012). In contrast, the opposite pattern has emerged in deeper semantic tasks,

such as semantic priming (Yap et al., 2017) and semantic decision (Pexman & Yap, 2018).
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Methods

Data set

The data set was trimmed by removing rows that lacked values on any variable, and

by also removing RTs that were more than 3 standard deviations away from the mean. The

standard deviation trimming was performed within participants, as done in the English

Lexicon Project (Balota et al., 2007). The resulting data set contained 795 participants,

12,636 words and 19,828 RTs. On average, there were 25 words per participant (SD =

36.04), and conversely, 2 participants per word (SD = 0.86).

Figure 18 shows the correlations among the predictors and the dependent variable.

RT

Vocabulary age

Word frequency

Visual strength

Word concreteness

Orthographic Levenshtein distance

.00 -.16 -.05 -.07 .17

.00 .00 .00 .00

.11 .16 -.47

.56 -.11

-.24

Figure 18
Zero-order correlations in the lexical decision study.

Variables

While the variables are outlined in the general introduction, a few further details

are provided below regarding some of them.

• Vocabulary age: the present study uses the name vocabulary age, as used in the

study of Balota et al. (2007). It measures the same linguistic experience as

vocabulary size.

A few details regarding the covariates follow.

95



• General cognition covariate: unlike in the two previous studies, the present study did

not include a general cognition covariate as such a variable was not available in the

data set of Balota et al. (2007).

• Lexical covariates (see preselection in Appendix A): orthographic Levenshtein

distance (Balota et al., 2007).

• Word concreteness (Brysbaert et al., 2014), used as a covariate of visual strength.

Diagnostics for the frequentist analysis

The model presented convergence warnings. To avoid removing important random

slopes, which could increase the Type I error rate—i.e., false positives (Brauer & Curtin,

2018; Singmann & Kellen, 2019), we examined the model after refitting it using seven

optimisation algorithms through the ‘allFit’ function of the ‘lme4’ package (Bates et al.,

2021). The results showed that all optimisers produced virtually identical means for all

effects, suggesting that the convergence warnings were not consequential (Bates et al.,

2021; see Appendix B).

The residual errors were not normally distributed, and attempts to mitigate this

deviation proved unsuccessful (see Appendix B). However, this is not likely to have posed a

major problem, as mixed-effects models are fairly robust to deviations from normality

(Knief & Forstmeier, 2021; Schielzeth et al., 2020). Last, the model did not present

multicollinearity problems, with all VIFs below 2 (see Dormann et al., 2013; Harrison et

al., 2018).

Diagnostics for the Bayesian analysis

Three Bayesian models were run that were respectively characterised by

informative, weakly-informative and diffuse priors. In each model, 5 chains were used. In

each chain, 2,000 warmup iterations were run, followed by 18,000 post-warmup iterations.

Thus, a total of 90,000 post-warmup draws were produced over all the chains.

The maximum R̂ value for the fixed effects across the three models was 1.00,

suggesting that these effects hadconverged (Schoot et al., 2021; Vehtari et al., 2021). For

96



the random effects, the maximum R̂ value was 1.02, barely exceeding the 1.01 threshold

(Vehtari et al., 2021).

The results of the posterior predictive checks were sound (see Appendix C),

indicating that the posterior distributions were sufficiently consistent with the observed

data. Furthermore, in the prior sensitivity analysis, the results were virtually identical with

the three priors that were considered (refer to the priors in Figure 1 above; to view the

results in detail, see Appendix E).

Results of Study 2.3

Table 5 presents the results. The fixed effects explained 5.61% of the variance, and

the random effects explained 10.25% (Nakagawa et al., 2017; for an explanation of this

difference, see Results of Study 2.1). Word frequency produced a significant main effect,

with higher values of variable facilitating participants’ performance, as reflected in shorter

RTs. None of the other effects of interest were significant.

The effect size of word frequency was far larger than that of visual strength. Figure

19 displays the frequentist and the Bayesian estimates, which are broadly similar. The

Bayesian estimates are from the weakly-informative prior model. The estimates of the two

other models, based on informative and diffuse priors, were virtually identical to these (see

Appendix E).

Figure 20 presents the interactions of vocabulary age with word frequency and with

visual strength, both non-significant. Figure 21 shows the interactions with gender, both

non-significant too.17

Statistical power analysis

Figures 22 and 23 show the estimated power for some main effects and interactions

of interest as a function of the number of participants. To plan the sample size for future

studies, these results must be considered under the assumptions that the future study

would apply a statistical method similar to ours—namely, a mixed-effects model with

17 Further interaction plots available in Appendix D.
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Visual strength × Gender

Word frequency × Gender

Visual strength × Vocabulary age

Word frequency × Vocabulary age

Word concreteness × Gender

Word concreteness × Vocabulary age

Visual strength

Word frequency

Gender

Vocabulary age

Word concreteness

Orthographic Levenshtein distance

(Intercept)

-0.2 -0.1 0.0 0.1 0.2

Effect size (β)

Frequentist analysis

Bayesian analysis

Figure 19
Estimates for the lexical decision study. The frequentist means (represented by red points)
are flanked by 95% confidence intervals. The Bayesian means (represented by blue vertical
lines) are flanked by 95% credible intervals in light blue.
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Figure 20
Interactions of vocabulary age with word frequency (panel a) and with visual strength (panel
b). Vocabulary age is constrained to sextiles (6 sections) in this plot, whereas in the statistical
analysis it contained more values within the current range. Sextiles were used because there
was not enough data for deciles nor for octiles. n = number of participants contained between
sextiles.
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Figure 21
Interactions of gender with word frequency (panel a) and with visual strength (panel b) in the
lexical decision study. Gender was analysed using z-scores, but for clarity, the basic labels
are used in the legend.
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Table 5
Frequentist model for the lexical decision study.

β SE 95% CI t p

(Intercept) 0.00 0.01 [-0.01, 0.01] -0.02 .983
Individual differences

Vocabulary age a 0.00 0.01 [-0.01, 0.01] -0.06 .950
Gender a 0.00 0.01 [-0.01, 0.01] 0.01 .995

Lexicosemantic covariates
Orthographic Levenshtein distance 0.11 0.01 [0.09, 0.12] 13.41 <.001
Word concreteness -0.02 0.01 [-0.04, -0.01] -2.79 .005

Semantic variables
Word frequency b -0.16 0.01 [-0.18, -0.14] -13.01 <.001
Visual strength b -0.01 0.01 [-0.03, 0.01] -1.36 .175

Interactions
Word concreteness × Vocabulary age 0.01 0.01 [-0.01, 0.03] 1.16 .244
Word concreteness × Gender 0.00 0.01 [-0.02, 0.02] 0.16 .876
Word frequency × Vocabulary age -0.02 0.01 [-0.04, 0.01] -1.31 .191
Visual strength × Vocabulary age 0.00 0.01 [-0.02, 0.02] 0.05 .962
Word frequency × Gender -0.02 0.01 [-0.04, 0.00] -1.75 .080
Visual strength × Gender -0.01 0.01 [-0.03, 0.01] -0.86 .390

Note. β = Estimate based on z-scored predictors; SE = standard error;
CI = confidence interval. Shaded rows contain covariates.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.

random intercepts and slopes—, and that the analysis would encompass at least as many

words as the current study, namely, 12,636 (distributed in various blocks across

participants, not all being presented to every participant). Furthermore, it is necessary to

consider each figure in detail. Here, we provide a summary. First, detecting the main effect

of word frequency would require 100 participants. Second, detecting the interactions of

word frequency and visual strength with vocabulary size would require 1,500 participants.

Third, detecting the other effects would require more than 2,000 participants.
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Figure 22
Power curves for some main effects in the lexical decision study.
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Figure 23
Power curves for some interactions in the lexical decision study.
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Discussion of Study 2.3

In the present study, we have delved into a task that is likely to elicit a shallower

level of semantic processing than the tasks from the previous studies. Furthermore, the

data set used in this study was considerably smaller (19,828 RTs, compared to 345,666 RTs

in Study 2.1 and 246,432 in Study 2.2). The relatively small size of the data set of Study

2.3 was due to the small number of words per participant (M = 25) and participants per

word (M = 2 participants per word). In this regard, the English Lexicon Project (Balota

et al., 2007) prioritised the total number of words included in their archive.

While the covariates presented large effects, none of the effects of interest turned

out to be significant or noteworthy. Furthermore, he comparison with the two previous

tasks is hindered by the major difference in the size of the data sets. Therefore, while it is

reasonable to find smaller semantic effects in the lexical decision task than in the other

two, we cannot reliably attribute this difference to the nature of the task.

As a minor suggestion, future studies could operationalise language using a measure

of orthographic neighbourhood size (e.g., orthographic Levenshtein distance), instead of

using word frequency as in the present study. While we used word frequency guided by a

data-driven selection (see Appendix A), neighbourhood size is a measure created for the

purpose of indexing word co-occurrence where only one word is directly available to the

researcher (Suárez et al., 2011; Yap & Balota, 2009).

Statistical power analysis

We analysed the statistical power associated with several effects of interest, across

various sample sizes. The results of this power analysis can help determine the number of

participants required to reliably examine each of these effects in a future study.

Importantly, the results assume two conditions. First, the future study would apply a

statistical method similar to ours—namely, a mixed-effects model with random intercepts

and slopes. Second, the analysis of the future study would encompass at least 12,636

stimulus words (distributed in various blocks across participants, not all being presented to

every participant).
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The results revealed that detecting the main effect of word frequency would require

100 participants. In contrast, detecting the other effects would require more than 2,000

participants.

General discussion of Study 2

In the present study, we have revisited three existing data sets in conceptual

processing to investigate the interplay between language-based and vision-based

information. Specifically, we have investigated how this interplay is modulated by

individual differences in vocabulary size, by the linguistic and visual information contained

in words, and by contextual demands such as semantic depth and presentation speed.

Although both language and vision played significant roles in some contexts (detailed

below), the main effects and the interactions of language-based information were larger

than those of vision-based information, consistent with previous research (Banks et al.,

2021; Kiela & Bottou, 2014; Lam et al., 2015; Louwerse et al., 2015; Pecher et al., 1998;

Petilli et al., 2021).

In our current approach, the sensorimotor domain was represented by a single

variable in each study, just as the language domain was represented by a single variable. In

the sensorimotor domain, we focussed on the vision to its hegemonic role in the human

brain (Reilly et al., 2020) as well as in several languages (Bernabeu, 2018; I.-H. Chen et al.,

2019; Lynott et al., 2020; Miceli et al., 2021; Morucci et al., 2019; Roque et al., 2015; Speed

& Brybaert, 2021; Speed & Majid, 2020; Vergallito et al., 2020; Winter et al., 2018; Zhong

et al., 2022). Notably, vision was also the domain chosen in a recent study that strongly

influenced the present study (Petilli et al., 2021), as well as in previous studies (Bottini et

al., 2021; De Deyne et al., 2021; Pearson & Kosslyn, 2015; Yee et al., 2012). In contrast to

this parsimonious approach, more comprehensive alternatives could be used in future

research to consider more sensorimotor domains. The first of these approaches is the

preselection approach, which incorporates a step prior to the main analysis. In this prior

step, a selection is performed among a large variety of word-level information, including

visual, auditory and motor information, etc. (Bernabeu et al., 2021). Selecting a single

variable provides a convenient way to compare the role of sensorimotor information to that
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of linguistic information, if the latter is also represented by a single variable. The second

approach is using a variable that aggregates sensorimotor information (Wingfield &

Connell, 2022b). Last, the third approach would be using more than one variable to

represent sensorimotor information in the main analysis. This would complicate the

analysis of interactions with other variables, as the overall number of terms in the model

could quickly exceed the maximum normally encountered in mixed-effects models—that is,

around 15. If random slopes are included for all those effects of interest (see Brauer &

Curtin, 2018; Singmann & Kellen, 2019), the model would most likely present convergence

warnings. In the face of this challenge, authors could either probe into those warnings (see

Appendix B), or could opt for different method, such as linear regression or machine

learning. Ultimately, in any selection of variables, there is a trade-off between parsimony

and comprehensiveness, and negotiating this trade-off often involves a certain degree of

arbitrariness. A time-consuming, stepwise selection can help reduce this arbitrariness (for

an example, see Appendix A).

Insofar as both ‘language’ and ‘vision’ were present in the models, it is (arguably)

valid to make conclusions based on them (see Louwerse, 2011; Louwerse & Connell, 2011;

Santos et al., 2011; Simmons et al., 2008). In contrast, when only one of these variables is

analysed, it may contain information from the other variable. If the superiority of language

is genuine—rather than due to a bogus reflection of sensorimotor information—, the

present results suggest that language is the main source of information in conceptual

processing, whereas sensorimotor information provides extra help, especially for

higher-vocabulary individuals (see Study 2.2, Semantic decision) and in deeper semantic

tasks (refer to task-relevance advantage above). As the ultimate conclusion, should

sensorimotor simulation be considered smaller but nonetheless important—especially for

some individuals and in some contexts—, or should it be considered a negligible by-product

of conceptual processing (Mahon & Caramazza, 2008)? Although the jury is still out, the

present results provide support for the tenet that sensorimotor simulation is smaller yet

important, especially for some individuals and in some contexts, whereas language is

important across the board.
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Furthermore, it is necessary to acknowledge a longstanding caveat in the present

topic, which also affects the present study. That is, it is extremely difficult to ascertain

whether our variables encode what we intend for them to encode. Specifically, it is possible

that the variables for language-based information encode some sensorimotor information,

and vice versa. To address this caveat, future research could combine the use of continuous

word-level variables—as used in the present study—with the use of brain-level

measurements (see Borghesani et al., 2016). Specifically, such an investigation should

examine whether language-based information is primarily circumscribed to the brain

regions in charge of semantic retrieval—such as the posterior left inferior frontal gyrus, the

right posterior inferior frontal gyrus, the left anterior superior temporal gyrus and sulcus,

and the left middle and posterior middle temporal gyrus (Hagoort, 2017; Skeide &

Friederici, 2016). Conversely, this investigation should also examine whether vision-based

information is primarily circumscribed to the brain regions in charge of visual semantic

information—such as Brodmann area 17, in the occipital lobe, corresponding to primary

visual cortex (Borghesani et al., 2016). Due to the importance of the time course, a method

that provides both spatial and temporal resolution, such as magnetoencephalography,

would be ideally suited for this research. If both sources of information are largely

circumscribed to their regions of interest in the brain, we could conclude that the variables

are valid. In contrast, if there are drifts in the processing—whereby language-based

information is consistently associated with activation in primary visual cortex, or whereby

vision-based information is associated with activation in the language regions of interest—,

we would need to question the validity of the variables.

As an alternative to the above design, a thriftier method would be available by

using two clusters of covariates. One of these clusters would be primarily associated with

language-based information, whereas the other cluster would be primarily associated with

vision-based information.18 This research should examine whether the variables in each

cluster all behave similarly, or whether—instead—there are any drifts between the

language and vision. As in the above design, the absence of drifts would validate the

18 Thank you to Prof. Max Louwerse for suggesting this idea.
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operationalisation of the two sides in the dichotomy, whereas the presence of drifts would

question the validity.

The present analysis controlled important sources of variance in the fixed effects and

in the random effects. First, in the fixed effects, covariates such as word concreteness and

individual differences in general cognition were included in the models. It was important to

include these covariates as they were substantially correlated with some of our variables of

interest, and research has suggested that these covariates may represent fundamentally

different processes from those of our variables of interest. For instance, word concreteness

and visual strength were highly correlated. However, whereas visual strength indexes a

perceptual component of semantic information, word concreteness might be circumscribed

to the lexical level, which does not require the processing of meaning (Bottini et al., 2021;

cf. Connell & Lynott, 2012; Pexman & Yap, 2018). Similarly, it was important to control

for individual differences in general cognition measures as covariates of vocabulary size

(Ratcliff et al., 2010; also see James et al., 2018; Pexman & Yap, 2018). We contend that

controlling (or, in other words, statistically adjusting) for important covariates is a valuable

asset of our present research. Furthermore, we think that the number of covariates we

selected was enough but not excessive. We did not find any signs of overfitting in the

models, as the variables that have been consistently influential in the literature were also

influential in our current models. To further delve into the role of covariates in conceptual

processing, we think that it would be valuable to investigate how the presence and the

absence of several covariates in a model can affect the effect sizes and the significance

results.19 Indeed, the differences between the results of Study 2.1 (semantic priming) and

the results of Petilli et al. (2021) suggested that the influence of covariates can be very

important. However, because these analyses differed in other aspects of the models, a

study focussed on covariates would be insightful (see Botvinik-Nezer et al., 2020; Perret &

Bonin, 2019; E.-J. Wagenmakers et al., 2022).

Second, in the random effects, the models contained a maximal structure that

accounted for far more variance than the fixed effects, thus providing for a conservative

19 Thank you to Prof. Max Louwerse for this idea.
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analysis. Indeed, the maximal random-effects structure served to impede a violation of the

independence of observations (Barr et al., 2013; Brauer & Curtin, 2018; Singmann &

Kellen, 2019). Specifically, random intercepts and slopes ensured that sources of

dependence such as participants and stimuli were kept outside of the fixed effects, which

are the relevant effects for the conclusions of this (and most other) research in conceptual

processing.

The RTs of higher-vocabulary participants were influenced by a smaller number of

variables than those of lower-vocabulary participants. This converges with previous

findings suggesting that higher and lower-vocabulary participants are affected by different

variables. In this regard, some research has suggested that the variables affecting

higher-vocabulary participants most are especially relevant to the task (Lim et al., 2020;

Pexman & Yap, 2018; Yap et al., 2012, 2017). Our results were consistent with the

‘task-relevance advantage’ associated with greater vocabulary knowledge. Specifically, in

lexical decision, higher-vocabulary participants were more sensitive than lower-vocabulary

participants to language-based information. In contrast, in semantic decision,

higher-vocabulary participants were more sensitive to word concreteness. In summary, the

present findings suggest that greater linguistic experience may be associated with greater

task adaptabiity during cognitive performance, with better comprehenders able to

selectively attend to task-relevant features compared to poorer comprehenders (Lim et al.,

2020; Pexman & Yap, 2018).

In addition, the semantic priming paradigm analysed in Study 2.1 revealed that

both language and vision were more important with the short SOA (200 ms) than with the

long SOA (1,200 ms). This finding replicates some of the previous literature (Petilli et al.,

2021) while highlighting the importance of the time course and the level of semantic

processing. That is, although the finding seems to be at odds with the theory that

perceptual simulation peaks after language-based associations (Barsalou et al., 2008;

Louwerse & Connell, 2011), the long SOA may have been too long for perceptual

simulation to be maintained in the lexical decision task that was performed by

participants, which is semantically shallow (Petilli et al., 2021).

109



Operationalisation of variables and other analytical choices

We compared two measures of vision-based priming. The first

measure—visual-strength difference—was operationalised as the difference in visual

strength (Lynott et al., 2020) between the prime word and the target word in each trial.

The second measure—vision-based similarity—, created by Petilli et al. (2021), was

based on vector representations trained on images. The results revealed that both

measures—including their interactions with other variables—produced similar effect sizes.

This underscores the consistency that exists between human ratings and computational

approximations to meaning (e.g., Charbonnier & Wartena, 2019, 2020; Günther et al.,

2016b; Louwerse et al., 2015; Mandera et al., 2017; Petilli et al., 2021; Solovyev, 2021;

Wingfield & Connell, 2022a). However, the effect of the human-based variable was slightly

larger, which is consistent with previous comparisons of human-based and computational

measures (De Deyne et al., 2016, 2019; Gagné et al., 2016; Schmidtke et al., 2018; cf.

Michaelov et al., 2022; Snefjella & Blank, 2020).

In contrast to the results of Petilli et al. (2021), vision-based similarity did not

significantly interact with SOA. Furthermore, in contrast to the main analysis, this

sub-analysis did not present a significant interaction between language-based similarity and

SOA. These two differences demonstrate how the results of our analyses can be critically

influenced by analytical choices such as the operationalisation of variables and the degree

of complexity of statistical models. In this regard, we must draw attention to an

often-overlooked difference between the variables used to operationalise the language

system—usually, text-based measures based on large corpora—and the variables used to

operationalise the embodiment system—usually, human-based measures based on ratings.

Critically, the literature contains many comparisons of text-based variables (De Deyne et

al., 2013, 2016; Günther et al., 2016a, 2016b; M. N. Jones et al., 2006; Lund & Burgess,

1996; Mandera et al., 2017; Mikolov et al., 2013; Wingfield & Connell, 2022a), whereas the

work on embodiment variables is more sparse and tends to compare different

modalities—e.g., valence, visual strength, auditory strength, etc. (Lynott et al., 2020;

Lynott & Connell, 2009; Newcombe et al., 2012; for an exception, see Vergallito et al.,
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2020). This accident of history might in part account for the superiority of linguistic

information over embodied information (see Banks et al., 2021; Kiela & Bottou, 2014; Lam

et al., 2015; Louwerse et al., 2015; Pecher et al., 1998; Petilli et al., 2021). Therefore, it

may be important to consider whether engineering work should be devoted to the

betterment of embodiment variables. On a more general conclusion, the present results

suggest that research findings are fundamentally dependent on research methods.

Statistical power

Power analyses were performed to estimate the sample sizes required to reliably

investigate a range of effects. The results suggested that 300 participants were sufficient to

examine the effect of language-based information contained in words, whereas more than

1,000 participants were necessary for the effect of vision-based information and for the

interactions of both former variables with vocabulary size, gender and presentation speed.

Regarding interactions specifically, The large sample sizes required to investigate some of

the effects relevant to embodied cognition and individual differences are not easily

attainable with the usual organisation of funding in Psychology and Neuroscience.
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Chapter 4: General discussion

This thesis has investigated how the interplay between linguistic and sensorimotor

systems in conceptual processing manifests at the levels of individuals, tasks and stimuli.

Furthermore, we have inquired what sample sizes are required to reliably investigate a

range of questions in conceptual processing.

Key findings

The work of this thesis has provided several novel findings and theoretical

contributions, extending the body of knowledge in the domains of conceptual processing

and embodied cognition.

First, Chapter 2 (Study 1) addressed the study of S.-C. Chen et al. (2018), to which

I have contributed. This study revisited the object orientation effect, which has been

influential in the study of sensorimotor simulation. The design comprised the classic

sentence-picture verification task, with objects matching or mismatching the orientation

implied in the preceding sentence on each trial. Furthermore, the study tracked the effect

across 18 languages, and in Chapter 2 I offered some suggestions for future crosslinguistic

studies in conceptual processing. The study also included an individual difference

measuring participants’ ability to mentally rotate objects, as previous research had

suggested that this ability could act as a confound. The results did not present a main

effect of orientation match, nor an interaction between the latter and language or mental

rotation. Taken together, and considered in light of previous non-replications, the present

study supports the absence of the object orientation effect, even though—arguably—the

jury always remains out in psychological science. In my view, both original results and

replications are subject to questioning, and it is only through the accumulation of

consistent findings that we can increase our certainty. Future research should examine the

reasons why certain effects provide stronger support for the embodied cognition theory

than other effects. I suggest that one reason may be the nature of the independent

variables: specifically, categorical variables such as those used in the present study may

offer less statistical power than continuous variables (Cohen, 1983; Petilli et al., 2021). In

the present thesis, we can compare two operationalisations of the embodied cognition
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theory. In Study 1, the object orientation effect was used, which implements a factorial

design. That is, the main independent variable is made up of categorical levels.

Interestingly, the action-sentence compatibility effect—which could not be replicated

recently (Morey et al., 2022)—also involves a factorial design. In contrast, in Study 2, we

used continuous variables capturing the degree of visual information associated with words

(among other variables). Thus, one of the questions that should be examined in future

research is whether the nature of the independent variables—e.g., categorical versus

continuous—could account for the replication success. In addition, future studies would

benefit from the availability of power analyses to estimate adequate sample sizes, from a

language typology background to guide crosslinguistic comparisons, and from the balancing

of sample sizes across all languages examined in a study to allow the interpretation of any

crosslinguistic differences. Three of the topics discussed in Chapter 2 were also addressed

in Chapter 3. The first of these topics was the role of sensorimotor simulation in

conceptual processing. The second topic was the role of individual differences. The third

topic was the importance of statistical power. In addition to these topics, Study 2

incorporated the study of language-based information. Whereas sensorimotor simulation is

characterised by detailed representations that tend to be linked to physical experience,

language is characterised by abstract associations across networks of words. Research has

suggested that language and simulation are compatible and complementary (Banks et al.,

2021; Kiela & Bottou, 2014; Lam et al., 2015; Louwerse et al., 2015; Pecher et al., 1998;

Petilli et al., 2021). Furthermore, Study 2 investigated what sample sizes are necessary to

reliably examine several effects of interest in conceptual processing. The findings on all

these topics are addressed below.

Second, in Study 2, we investigated the effects of language-based and vision-based

information at the levels of individuals, words and tasks. The findings suggested that both

language-based information and perceptual simulation contribute to the comprehension of

words, consistent with a hybrid theory of conceptual processing centred on the interplay

between language and embodiment (Barsalou et al., 2008; Connell & Lynott, 2014a;

Louwerse, 2011). Importantly, language was far more influential than vision overall,

consistent with previous research. The analyses implemented conservative models
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containing a comprehensive array of fixed effects, including covariates that competed

against our variables of interest. Furthermore, the models included a maximal

random-effects structure, consisting of random intercepts and slopes that accounted for far

more variance than the fixed effects.

Third, a ‘task-relevance advantage’ was identified in higher-vocabulary participants.

Specifically, in lexical decision (Studies 2.1 and 2.3), higher-vocabulary participants were

more sensitive to language-based information than lower-vocabulary participants. In

contrast, in semantic decision (Study 2.2), higher-vocabulary participants were more

sensitive to word concreteness. Crucially, to isolate the confounding influence of general

cognitive abilities different from vocabulary, the analyses in Studies 2.1 (semantic priming)

and 2.2 (semantic decision) included general cognition covariates—i.e., attentional control

and information uptake. In summary, the present findings suggest that greater linguistic

experience may be associated with greater task adaptabiity during conceptual processing

(Lim et al., 2020; Pexman & Yap, 2018).

Fourth, the semantic priming paradigm analysed in Study 2.1 revealed that both

language and vision were more important with the short SOA (200 ms) than with the long

SOA (1,200 ms). This finding replicates some of the previous literature (Petilli et al., 2021)

while highlighting the importance of the time course and the level of semantic processing.

That is, although the finding seems to be at odds with the theory that perceptual

simulation peaks after language-based associations (Barsalou et al., 2008; Louwerse &

Connell, 2011), the long SOA may have been too long for perceptual simulation to be

maintained in the lexical decision task that was performed by participants, which is

semantically shallow (Petilli et al., 2021). A follow-up on this issue is outlined in the last

section below.

Fifth, a human-based measure of visual information, created using ratings (Lynott

et al., 2020) was found to be superior to a computational measure created using neural

networks (Petilli et al., 2021). This finding is consistent with a body of literature

suggesting human-based measures are superior to computational measures (De Deyne et

al., 2016, 2019; Gagné et al., 2016; Schmidtke et al., 2018; cf. Michaelov et al., 2022;
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Snefjella & Blank, 2020). Furthermore, the difference between the results of the variables

resonates with the finding that simpler variables sometimes outperform more complex

variables (Wingfield & Connell, 2022a). Last, future experimental or theoretical work could

investigate whether the use of human-based measures to predict human behaviour poses a

major problem of circularity that could (in part) invalidate the conclusions of such research

(Petilli et al., 2021).

Sixth, we discussed the influence of analytical parameters such as the

operationalisation of variables—as reviewed above—and the degree of complexity of

statistical models. ‘Accidents of history’ in a research field—that is, arbitrary

circumstances—may influence important research conclusions. Consider the situation of a

field in which some work has been devoted to improving the precision of certain variables

over years. This has been the case in computational psycholinguistics, with the creation of

text-based variables such as Latent Semantic Analysis, Hyperspace Analog to Language

and ‘word2vec’ (De Deyne et al., 2013, 2016; Günther et al., 2016a, 2016b; M. N. Jones et

al., 2006; Lund & Burgess, 1996; Mandera et al., 2017; Mikolov et al., 2013; Wingfield &

Connell, 2022a). All else being equal, a competition between one of the research-based

supervariables and any non-engineered variable would have a likely winner—the

supervariable. Nowadays, in conceptual processing, it is necessary to compare the role of

text-based semantic variables, such as the aforementioned ones, to embodiment variables

measuring the perceptual, motor, emotional or social information in words. Whereas

text-based variables boast a history of steady incremental improvement over time,

embodiment variables are more recent and have not undergone such a process. While we

do not think that this accident of history fully explains the superiority of language-based

information in the present analyses and in many previous analyses, we think it would be

valuable to continue reflecting on the confounding role of measurement instruments, and

indeed to consider whether some engineering work—as it were—should be applied to

embodiment variables too.

Seventh, we delved into the issue of statistical power, and reviewed recent findings

suggesting that the sample size required for adequate analyses in topics of cognitive
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psychology and neuroscience far exceed the sample sizes we are used to. Furthermore, we

calculated the sample size required to reliably approach several effects of interest in

conceptual processing. For this purpose, we performed Monte Carlo simulations using the

models from our main analyses. The results suggested that 300 participants were sufficient

to examine the effect of language-based information contained in words, whereas more than

1,000 participants were necessary for the effect of vision-based information and for the

interactions of both former variables with vocabulary size, gender and presentation speed

(i.e., SOA). These analyses of sample size requirements have ramifications for future

research in conceptual processing. While the general pattern is that sample sizes should be

increased, the findings also highlight how important it is to consider the specific main

effects or interactions that are of greatest theoretical importance. For example, while it

would likely take thousands of participants to examine the interaction between gender and

language or vision, a much smaller sample would suffice to examine the interaction between

vocabulary size and language or vision. Importantly, this power analysis was validated by

the varying results obtained for the various effects. Whereas language-based information

required feasible sample sizes, the other effects required far larger samples. This puts the

results into perspective, refuting the possibility that the analysis is overly conservative

across the board. Furthermore, the large figures required for some effects are not entirely

unprecedented. In a power analysis recently conducted in neuroscience, Marek et al. (2022)

found that, to investigate the mapping between structural and functional individual

differences, the appropriate sample size was around 10,000 participants, rather than the

average 25 participants. The results of our current power analysis call for more power

analyses address a range of effects in conceptual processing. If large sample sizes reappear

in those results, the onus will be on scientists to decide whether we can and should invest

the required funding to achieve a sufficient sample size, or whether we must accept a

limited statistical power, with the reduced reliability it entails (Vasishth & Gelman, 2021).

In this regard, the pioneering efforts invested in the design of citizen science studies are to

be commended. A prime example is the Small World of Words project (De Deyne et al.,

2019), which involves the (ongoing) collection of word association data. There are many

challenges associated with citizen science designs—that is, experiments that are open to
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wide audiences that are not directly recruited or registered—, such as the limited control of

who participates and how they do it. On the other hand, the strength of very large

numbers might compensate for those challenges. Another difficulty of this approach of the

scarcity of precedents. Most cognitive psychologists would currently require a lot of

external support to set up a study such as the Small World of Words, especially due to the

computational server(s) required to run the experiment and to store the data, as well as

the large-scale hardware required to analyse such a large amount of data (namely, a

high-performance computing cluster).

Limitations and future directions

The design of Study 2 was influenced by the hybrid approach to conceptual

processing, which pays attention to both linguistic and sensorimotor information in words

(Barsalou et al., 2008; Louwerse et al., 2015; Louwerse & Connell, 2011). Therefore, in each

of the three studies composing Study 2, language and sensorimotor information were each

represented by a variable. Insofar as both aspects were present in the model, the results

suggest that both were important, although language was far more important than vision.

Vision was more strictly constrained by other parameters, such as participants’ vocabulary

size and the degree of semantic depth of the tasks.

Furthermore, it is necessary to acknowledge a longstanding caveat in the present

topic, which also affects the present study. That is, it is extremely difficult to ascertain

whether our variables encode what we intend for them to encode. Specifically, it is possible

that the variables for language-based information encode some sensorimotor information,

and vice versa. In the discussion of Study 2, we suggested two methods to address this

caveat by measuring the specificity of the variables. One method consisted of examining

the instantiation of language-based and vision-based information in the brain, whereas the

other method consisted of crossvalidating several variables measuring each of the two

constructs of interest. We can now consider a third possibility to approach this question in

a novel way. The idea would be to investigate the role of language and sensorimotor

information during language development—e.g., at 3, 5, 7 and 9 years of age—under the
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hypothesis of an increasing importance of language over time.20 Notwithstanding the

existing research (Ponari et al., 2020; Ponari, Norbury, & Vigliocco, 2018; Ponari, Norbury,

Rotaru, et al., 2018; Vigliocco et al., 2018), there is room for more developmental research

in conceptual processing, as the vast majority of this topic is based on adult participants.

We are currently preparing a study that will follow up on Study 2.1 by

incorporating several enhancements. First, the study will incorporate a measure of

participants’ visual ability as an effect of interest. Alongside this measure, there will be

reading ability as another effect of interest and working memory as a covariate. At the

word level, the effects of interest will be the same as those of Study 2.1—namely,

language-based similarity and vision-based difference. This measure will be alongside one

of reading ability and will encompass several improvements. an additional encompass the

three main variables of interest from Study 2.1, namely, language and vision at the word

level and language at the participant level. along with incorporate visual ability as an

individual difference. Thus, compare the effects of language and vision both at the level of

an individual difference variable measuring visual ability. In a recent study, Muraki and

Pexman (2021) investigated how individual differences in motor imagery predicted motor

simulation. In contrast to Muraki et al.’s study, the study we are preparing will measure

individual differences in vision. Furthermore, at the word level, whereas Muraki et

al. focussed on motor semantic features, our next study will encompass language-based and

vision-based information. Indeed, our study will comprise language and vision at the levels

of participants and words.

In addition, our next study will address the time courses of language-based and

vision-based processing. In Study 2.1, language and vision were both more important with

the short SOA than with the long SOA. To address this comparison more reliably in our

next study, we will implement a semantic priming paradigm with a semantic decision task,

which elicits a deeper semantic processing than lexical decision, and is thus better suited

for capturing the time course of linguistic processing and that of perceptual simulation (see

Petilli et al., 2021). The concrete implementation of this task will be as follows.

20 Thank you to Dr. Margriet Groen for suggesting this idea.
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Participants will see a prime word and a target word on each trial, and they will assess

whether the target word is abstract or concrete. Semantic decision also has the practical

advantage that it involves fewer invalid trials than lexical decision, as semantic decision

does not require any pseudowords.

Last, we will implement a recent recommendation from Petilli et al. (2021) to

operationalise SOA as a continuous variable, rather than the typical categorical form. The

continuous SOA measure will enable a more precise insight on the time course of

language-based and vision-based information (for current materials and forthcoming

updates on this study, see https://osf.io/gwh7x).
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Appendix A: Selection of lexical covariates

Lexical covariates are usually used in conceptual processing studies due to the

widespread connections among lexical and semantic variables (Petilli et al., 2021; e.g.,

Pexman & Yap, 2018; Wingfield & Connell, 2022a). Including these covariates—or nuisance

variables—in the model allows a more rigorous analysis of the predictors of interest

(Sassenhagen & Alday, 2016). In each of the present studies, the covariates were selected

out of a group of five variables that had been used as covariates in Wingfield and Connell

(2022a), and are widely used (e.g., Petilli et al., 2021). Some of these covariates were

highly intercorrelated (r > .70), as shown below. To avoid the problem of multicollinearity,

the maximum zero-order correlation allowed between any two covariates was of r = ±.70

(Dormann et al., 2013; Harrison et al., 2018). In cases of higher correlations, the covariate

with the largest effect in the model, based on the estimate (β), was selected.

In Studies 2.1 (semantic priming) and 2,2 (semantic decision), the lexical covariates

were selected out of five variables, which mirrored those used by Wingfield and Connell

(2022a): namely, number of letters (i.e., orthographic length, which we computed in R),

word frequency, number of syllables (both the latter from Balota et al., 2007), orthographic

Levenshtein distance (Yarkoni et al., 2008) and phonological Levenshtein distance (Suárez

et al., 2011; Yap & Balota, 2009). In Study 2.3 (lexical decision), the procedure was more

particular, as it served two purposes. First, the variable that had the largest effect out of

the five was selected as the language-based predictor of interest (see reason in

Study 2.3 in the main text). Second, one variable was selected as a covariate among the

remaining four.

All the models included by-participant and by-word random intercepts, as well as

by-participant random slopes for every predictor. Below, the correlations and the selection

model are shown for each study.

Study 2.1: Semantic priming

All lexical covariates considered in the semantic priming study were based on the

target words. Figure A1 shows the zero-order correlations among the lexical covariates
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considered in the selection.

Word frequency

Number of letters

Number of syllables

Phonological Levenshtein distance

Orthographic Levenshtein distance

-.37 -.32 -.35 -.35

.80 .83 .87

.81 .76

.89

Figure A1
Zero-order correlations among lexical covariates pretested in the semantic priming study.

Table A1 shows the results of the selection model.

Table A1
Mixed-effects model for the selection of lexical covariates in the semantic priming study.

β SE 95% CI t p

(Intercept) 0.01 0.00 [0.00, 0.02] 1.19 .236
Word frequency -0.14 0.01 [-0.15, -0.13] -24.19 <.001
Number of letters 0.00 0.01 [-0.02, 0.02] 0.12 .903
Number of syllables 0.04 0.01 [0.02, 0.06] 4.02 <.001
Orthographic Levenshtein distance 0.03 0.01 [0.00, 0.05] 2.19 .029
Phonological Levenshtein distance 0.02 0.01 [-0.01, 0.04] 1.28 .199

Note. β = Estimate based on z-scored predictors; SE = standard error;
CI = confidence interval. By-participant random slopes were included for
every effect.

Considering the maximum correlation allowed (r = ±.70) and the results of the

model, the variables that will be included as covariates in the main analysis are word

frequency and number of syllables.

Study 2.2: Semantic decision

Figure A2 shows the zero-order correlations among the lexical covariates considered

in the selection.

Table A2 shows the results of the selection model.
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Word frequency

Number of letters

Number of syllables

Phonological Levenshtein distance

Orthographic Levenshtein distance

-.31 -.26 -.37 -.35

.71 .77 .83

.67 .57

.86

Figure A2
Zero-order correlations for the lexical covariates pretested in the semantic decision study.

Table A2
Mixed-effects model for the selection of lexical covariates in the semantic decision study.

β SE 95% CI t p

(Intercept) 0.05 0.00 [0.05, 0.06] 12.35 <.001
Word frequency -0.13 0.01 [-0.14, -0.11] -20.01 <.001
Number of letters 0.05 0.01 [0.03, 0.07] 5.20 <.001
Number of syllables 0.08 0.01 [0.07, 0.10] 10.80 <.001
Orthographic Levenshtein distance -0.13 0.01 [-0.15, -0.10] -10.23 <.001
Phonological Levenshtein distance 0.01 0.01 [-0.01, 0.03] 0.91 .361

Note. β = Estimate based on z-scored predictors; SE = standard error;
CI = confidence interval. By-participant random slopes were included for
every effect.

Considering the maximum correlation allowed (r = ±.70) and the results of the

model, the variables that will be included as covariates in the main analysis are word

frequency and orthographic Levenshtein distance.

Study 2.3: Lexical decision

The selection model for Study 2.3 served a twofold purpose. First, the variable that

had the largest effect out of the five was selected as the language-based predictor of interest

(see reason in Study 2.3 in the main text). Second, one variable was selected as a covariate

among the remaining four.

Figure A3 shows the zero-order correlations among the lexical covariates considered

in the selection.
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Word frequency

Number of letters

Number of syllables

Phonological Levenshtein distance

Orthographic Levenshtein distance

-.48 -.42 -.47 -.47

.83 .84 .87

.79 .75

.91

Figure A3
Zero-order correlations for the lexical covariates pretested in the lexical decision study.

Table A3 shows the results of the selection model.
Table A3
Mixed-effects model for the selection of lexical covariates in the lexical decision study.

β SE 95% CI t p

(Intercept) 0.00 0.01 [-0.01, 0.01] -0.02 .981
Word frequency -0.12 0.01 [-0.15, -0.10] -11.60 <.001
Number of letters 0.05 0.02 [0.01, 0.09] 2.73 .006
Number of syllables 0.06 0.01 [0.03, 0.09] 4.43 <.001
Orthographic Levenshtein distance 0.10 0.02 [0.05, 0.14] 4.52 <.001
Phonological Levenshtein distance -0.02 0.02 [-0.06, 0.02] -1.18 .238

Note. β = Estimate based on z-scored predictors; SE = standard error;
CI = confidence interval. By-participant random slopes were included for
every effect.

Considering the maximum correlation allowed (r = ±.70), the results of the model,

and the use of word frequency as a predictor of interest in the model, the variable that will

be included as a covariate in the main analysis is orthographic Levenshtein distance.

Conclusion

Word frequency presented the largest effect in the three models. Orthographic

Levenshtein distance was the second largest effect in the semantic decision and the lexical

decision studies, whereas its phonological counterpart was not significant in any of the

studies. The latter difference makes sense, as participants read the stimulus words in the

three studies (Brysbaert, 2022).
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Appendix B: Diagnostics for the frequentist analyses

Below, the convergence warnings and the non-normal residuals are first addressed

generally, and then in more detail in the context of each study.

Convergence

The challenge of convergence is well known in the area of mixed-effects models.

These models often struggle to reach reliable-enough estimates due to an insufficiency of

data relative to the complexity of the model (Baayen et al., 2008; Bates et al., 2015; Brauer

& Curtin, 2018). The solutions proposed range from the removal of random slopes under

certain conditions (Matuschek et al., 2017) to the maintenance of random slopes in spite of

convergence warnings, which seeks to avoid an inflation of the Type I error due to

dependencies in the data (Brauer & Curtin, 2018; Singmann & Kellen, 2019).

The multiple-optimisers sanity check from lme4::allFit()

Framed within the drive to maintain random slopes wherever possible, the

developers of the ‘lme4’ package propose a sanity check that uses a part of the ‘lme4’

engine called ‘optimiser’. Every model has a default optimiser, unless a specific one is

chosen through control = lmerControl(optimiser = '...') (in lmer models) or

control = glmerControl(optimiser = '...') (in glmer models). The seven

widely-available optimisers are:

• bobyqa

• Nelder_Mead

• nlminbwrap

• nmkbw

• optimx.L-BFGS-B

• nloptwrap.NLOPT_LN_NELDERMEAD

• nloptwrap.NLOPT_LN_BOBYQA

To assess whether convergence warnings render the results invalid, or on the

contrary, the results can be deemed valid in spite of the warnings, Bates et al. (2021)
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suggest refitting models affected by convergence warnings with a variety of optimisers. The

authors argue that if the different optimisers produce practically-equivalent results, the

results are valid. For this purpose, the ‘allFit’ function from the ‘lme4’ package allows the

refitting of models using a number of optimisers. To use the seven optimisers listed above,

two extra packages were installed: ‘dfoptim’ and ‘optimx’ (see lme4 manual). The output

from ‘allFit’ contains several statistics on the fixed and the random effects fitted by each

optimiser (see example).

The severity of convergence problems in each study will be examined below using

the ‘allFit’ function from the ‘lme4’ package.

Residual errors not normally distributed

The residuals of the linear mixed-effects models in the three studies violated the

assumption of normality. Even though linear mixed-effects models tend to be quite robust

to deviations from normality (Knief & Forstmeier, 2021; Schielzeth et al., 2020), we sought

to verify our results. To this end, we attempted to run robust models using two methods,

neither of which worked. The methods are nonetheless described below.

Method A: robustlmm model

The first method drew on the R package ‘robustlmm’ v2.4-4 (Koller, 2016). To

calculate the p values, we followed the procedure of Sleegers et al. (2021), but used the

Kenward-Roger method instead of Satterthwaite (see Luke, 2017).

Method B: Inverse Gaussian model with identity link function

In the second approach, we followed a method proposed by Lo and Andrews (2015),

based on generalized linear mixed-effects models (GLMM) implementing an identity link

function. According to Lo and Andrews (2015), the link function helps avoid directly

transforming the dependent variable, which can hinder the interpretability of the results

(also see Knief & Forstmeier, 2021).

GLMMs require the use of families of distributions. Lo and Andrews (2015) tested

the Gaussian, Gamma and Inverse Gaussian families, with either an identity or an inverse
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link function. The authors found that the Inverse Gaussian family with an identity link

yielded the most normal residuals. The Inverse Gaussian and the Gamma families only

accept positive values in the outcome variable (see Table 15.2 in Fox, 2016). Due to this

restriction, the dependent variable in the present model is raw RT, unlike the standardised

RT that was used in the main analysis.

P values were to be calculated through parametric bootstrapping, which is the most

robust method for GLMMs, as the Kenward-Roger and Satterthwaite methods are not

available for these models (Luke, 2017; Singmann et al., 2021).

Neither Method A nor Method B could finally be used, as the code produced errors.

These errors are shown in the corresponding scripts inside the ‘model_diagnostics’ folder in

each study.

The residuals of the final models are shown in the corresponding sections below.

Study 2.1: Semantic priming

Convergence

In the initial model, the optimiser used (the default one in ‘lmerTest’) was ’‘, and

the convergence warning read: ’boundary (singular) fit: see ?isSingular’.

Based on the reanalysis using seven optimisers, Figure B1 shows the fixed, main

effects, and Figure B2 shows the fixed interactions.

Residual errors not normally distributed

Figure B3 shows the deviation from normality of the residuals of the linear

mixed-effects model.

Semantic priming model including visual similarity

Convergence. In the initial model, the optimiser used (the default one in

‘lmerTest’) was ’‘, and the convergence warning read: ’boundary (singular) fit: see

?isSingular’.
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Figure B1
Fixed, main effects from the semantic priming study fitted by seven optimisers.
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Figure B2
Fixed interaction effects from the semantic priming study fitted by seven optimisers.
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Figure B3
Residuals of the linear mixed-effects model from the semantic priming study.
KS = Kolmogorov-Smirnov test; TS = tail-sensitive confidence bands.

Based on the reanalysis using seven optimisers, Figure B4 shows the fixed, main

effects, and Figure B5 shows the fixed interactions.

Residual errors not normally distributed. Figure B6 shows the deviation

from normality of the residuals of the linear mixed-effects model.

Study 2.2: Semantic decision

Convergence

In the initial model, the optimiser used (the default one in ‘lmerTest’) was ’‘, and

the convergence warning read: ’boundary (singular) fit: see ?isSingular’.

Based on the reanalysis using seven optimisers, Figure B7 shows the fixed, main

effects, and Figure B8 shows the fixed interactions.
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Figure B4
Fixed, main effects from the semantic priming study fitted by seven optimisers.
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Figure B5
Fixed interaction effects from the semantic priming study fitted by seven optimisers.
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Figure B6
Residuals of the linear mixed-effects model from the semantic priming study.
KS = Kolmogorov-Smirnov test; TS = tail-sensitive confidence bands.

Residual errors not normally distributed

Figure B9 shows the deviation from normality of the residuals.

Study 2.3: Lexical decision

Convergence

In the initial model, the optimiser used (the default one in ‘lmerTest’) was ’‘, and

the convergence warning read: ’boundary (singular) fit: see ?isSingular’.

Based on the reanalysis using seven optimisers, Figure B10 shows the fixed, main

effects, and Figure B11 shows the fixed interactions.

Residual errors not normally distributed

Figure B12 shows the deviation from normality of the residuals.
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Figure B7
Fixed, main effects from the semantic decision study fitted by seven optimisers.
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Figure B8
Fixed interaction effects from the semantic decision study fitted by seven optimisers.
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Figure B9
Residuals of the linear mixed-effects model from the semantic decision study.
KS = Kolmogorov-Smirnov test; TS = tail-sensitive confidence bands.
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Figure B10
Fixed, main effects from the lexical decision study fitted by seven optimisers.
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Figure B11
Fixed interaction effects from the lexical decision study fitted by seven optimisers.
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Figure B12
Residuals of the linear mixed-effects model from the lexical decision study. The out-
liers in the residuals deviate from the coloured areas indicating an acceptable normality.
KS = Kolmogorov-Smirnov test; TS = tail-sensitive confidence bands.
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Appendix C: Diagnostics for the Bayesian analyses

This appendix presents diagnostics for the Bayesian analyses. In each study, prior

predictive checks are presented before posterior predictive checks. Furthermore, in each of

these checks, the models presented first have the default Gaussian distribution, whereas the

next series have an exponentially modified Gaussian (dubbed ‘ex-Gaussian’) distribution

with an identity link function (for details, see the section titled ‘Distributions and prior

predictive checks’ in the main text). Eyeball estimation is used to assess the outcomes of

these checks (for background on predictive checks and for alternative estimation

procedures, see Gelman et al., 1996; Moran et al., 2022; Schoot et al., 2021). One

diagnostic not shown in this appendix is the R̂, which is shown in Appendix E instead.

Study 2.1: Semantic priming

Prior predictive checks

Figures C1, C2 and C3 show the prior predictive checks for the Gaussian models.

These plots show the maximum, mean and minimum values of the observed data (y) and

those of the predicted distribution (yrep, which stands for replications of the outcome). The

way of interpreting these plots is by comparing the observed data to the predicted

distribution. The specifics of this comparison vary across the three plots. First, in the

upper plot, which shows the maximum values, the ideal scenario would show the observed

maximum value (y) overlapping with the maximum value of the predicted distribution

(yrep). Second, in the middle plot, showing the mean values, the ideal scenario would show

the observed mean value (y) overlapping with the mean value of the predicted distribution

(yrep). Last, in the lower plot, which shows the minimum values, the ideal scenario would

have the observed minimum value (y) overlapping with the minimum value of the predicted

distribution (yrep). While the overlap need not be absolute, the closer the observed and the

predicted values are on the X axis, the better. As such, the three predictive checks

below—corresponding to models that used the default Gaussian distribution—show that

the priors fitted the data acceptably but not very well.

In contrast to the above results, Figures C4, C5 and C6 demonstrate that, when an
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Figure C1
Prior predictive checks for the Gaussian, informative prior model from the semantic priming
study. y = observed data; yrep = predicted data.

140



-16 -12 -8 -4
Response time (z)

T = min
T(yrep)

T(y)

Prior predictive distribution of minimum values

-0.4 0.0 0.4
Response time (z)

T = mean
T(yrep)

T(y)

Prior predictive distribution of means

4 8 12 16
Response time (z)

T = max
T(yrep)

T(y)

Prior predictive distribution of maximum values

Figure C2
Prior predictive checks for the Gaussian, weakly-informative prior model from the semantic
priming study. y = observed data; yrep = predicted data.
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Figure C3
Prior predictive checks for the Gaussian, diffuse prior model from the semantic priming
study. y = observed data; yrep = predicted data.
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ex-Gaussian distribution was used, the priors fitted the data far better, which converged

with the results of a similar comparison performed by Rodríguez-Ferreiro et al. (2020) (see

supplementary materials of the latter study).

-100 -75 -50 -25 0
Response time (z)

T = min
T(yrep)

T(y)

Prior predictive distribution of minimum values

-0.4 -0.2 0.0 0.2 0.4
Response time (z)

T = mean
T(yrep)

T(y)

Prior predictive distribution of means

0 500 1000
Response time (z)

T = max
T(yrep)

T(y)

Prior predictive distribution of maximum values

Figure C4
Prior predictive checks for the ex-Gaussian, informative prior model from the semantic prim-
ing study. y = observed data; yrep = predicted data.

Posterior predictive checks

Based on the above results, the ex-Gaussian distribution was used in the final

models. Figure C7 presents the posterior predictive checks for the latter models. The

interpretation of these plots is simple: the distributions of the observed (y) and the

predicted data (yrep) should be as similar as possible. As such, the plots below suggest that

the results are trustworthy.
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Figure C5
Prior predictive checks for the ex-Gaussian, weakly-informative prior model from the seman-
tic priming study. y = observed data; yrep = predicted data.
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Figure C6
Prior predictive checks for the ex-Gaussian, diffuse prior model from the semantic priming
study. y = observed data; yrep = predicted data.
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Figure C7
Posterior predictive checks for the (ex-Gaussian) models from the semantic priming study.
The observed data (y) and the predicted data (yrep) almost entirely overlap with each other,
demonstrating a very good fit.

Study 2.2: Semantic decision

Prior predictive checks

Figures C8, C9 and C10 show the prior predictive checks for the Gaussian models

(for background on these checks, see Study 2.1). The three plots—corresponding to models

that used the default Gaussian distribution—show that the priors fitted the data

acceptably but not very well.

In contrast to the results from the Gaussian models, Figures C11, C12 and C13

demonstrate that, when an ex-Gaussian distribution was used, the priors fitted the data far

better, which converged with the results found in Study 2.1.

Posterior predictive checks

Based on the above results, the ex-Gaussian distribution was used in the final

models. Figure C14 presents the posterior predictive checks for the latter models. The

interpretation of these plots is simple: the distributions of the observed (y) and the

predicted data (yrep) should be as similar as possible. As such, the plots below suggest that

the results are not entirely trustworthy. Indeed, the results themselves (Appendix E) are

clearly not valid.
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Figure C8
Prior predictive checks for the Gaussian, informative prior model from the semantic decision
study. y = observed data; yrep = predicted data.
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Figure C9
Prior predictive checks for the Gaussian, weakly-informative prior model from the semantic
decision study. y = observed data; yrep = predicted data.
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Figure C10
Prior predictive checks for the Gaussian, diffuse prior model from the semantic decision
study. y = observed data; yrep = predicted data.
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Figure C11
Prior predictive checks for the ex-Gaussian, informative prior model from the semantic de-
cision study. y = observed data; yrep = predicted data.
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Figure C12
Prior predictive checks for the ex-Gaussian, weakly-informative prior model from the seman-
tic decision study. y = observed data; yrep = predicted data.
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Figure C13
Prior predictive checks for the ex-Gaussian, diffuse prior model from the semantic decision
study. y = observed data; yrep = predicted data.
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Figure C14
Posterior predictive checks for the (ex-Gaussian) models from the semantic decision study.
y = observed data; yrep = predicted data.

Study 2.3: Lexical decision

Prior predictive checks

Figures C15, C16 and C17 show the prior predictive checks for the Gaussian models

(for background on these checks, see Study 2.1). The three plots—corresponding to models

that used the default Gaussian distribution—show that the priors fitted the data

acceptably but not very well.

In contrast to the results from the Gaussian models, Figures C18, C19 and C20

demonstrate that, when an ex-Gaussian distribution was used, the priors fitted the data far

better, which converged with the results found in Studies 2.1 and 2.2.

Posterior predictive checks

Based on the above results, the ex-Gaussian distribution was used in the final

models. Figure C21 presents the posterior predictive checks for the latter models. The

interpretation of these plots is simple: the distributions of the observed (y) and the

predicted data (yrep) should be as similar as possible. As such, the plots below suggest that

the results are trustworthy.
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Figure C15
Prior predictive checks for the Gaussian, informative prior model from the lexical decision
study. y = observed data; yrep = predicted data.
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Figure C16
Prior predictive checks for the Gaussian, weakly-informative prior model from the lexical
decision study. y = observed data; yrep = predicted data.
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Figure C17
Prior predictive checks for the Gaussian, diffuse prior model from the lexical decision study.
y = observed data; yrep = predicted data.

156



-75 -50 -25 0
Response time (z)

T = min
T(yrep)

T(y)

Prior predictive distribution of minimum values

-0.5 0.0 0.5 1.0
Response time (z)

T = mean
T(yrep)

T(y)

Prior predictive distribution of means

0 250 500 750
Response time (z)

T = max
T(yrep)

T(y)

Prior predictive distribution of maximum values

Figure C18
Prior predictive checks for the ex-Gaussian, informative prior model from the lexical decision
study. y = observed data; yrep = predicted data.
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Figure C19
Prior predictive checks for the ex-Gaussian, weakly-informative prior model from the lexical
decision study. y = observed data; yrep = predicted data.

158



-75 -50 -25 0
Response time (z)

T = min
T(yrep)

T(y)

Prior predictive distribution of minimum values

-1.0 -0.5 0.0 0.5 1.0
Response time (z)

T = mean
T(yrep)

T(y)

Prior predictive distribution of means

0 300 600 900
Response time (z)

T = max
T(yrep)

T(y)

Prior predictive distribution of maximum values

Figure C20
Prior predictive checks for the ex-Gaussian, diffuse prior model from the lexical decision
study. y = observed data; yrep = predicted data.
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Figure C21
Posterior predictive checks for the (ex-Gaussian) models from the lexical decision study. y
= observed data; yrep = predicted data.
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Appendix D: Further interaction plots

Figures D1 – D7 present interactions that were not displayed in the main article.

All interaction plots are based on the frequentist analysis.

Study 2.1: Semantic priming
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Figure D1
Interactions of attentional control with language-based similarity (panel a) and with visual-
strength difference (panel b). Attentional control is constrained to deciles (10 sections) in
this plot, whereas in the statistical analysis it contained more values within the current range.
n = number of participants contained between deciles.
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Figure D2
Interaction between stimulus onset asynchrony (SOA) and word-concreteness difference.
SOA was analysed using z-scores, but for clarity, the basic labels are used in the legend.
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Figure D3
Interaction between word-concreteness difference and vocabulary size. Vocabulary size is
constrained to deciles in this plot, whereas in the statistical analysis it contained more values
within the current range. n = number of participants contained between deciles.
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Figure D4
Interaction between word-concreteness difference and gender. Gender was analysed using
z-scores, but for clarity, the basic labels are used in the legend. n = number of participants
contained between deciles.
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Study 2.2: Semantic decision
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Figure D5
Interactions of information uptake with word co-occurrence (panel a) and with visual strength
(panel b). Information uptake is constrained to deciles in this plot, whereas in the statistical
analysis it contained more values within the current range. n = number of participants
contained between deciles.
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Study 2.3: Lexical decision
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Figure D6
Interaction between word concreteness and vocabulary age. Vocabulary age is constrained to
sextiles (6 sections) in this plot, whereas in the statistical analysis it contained more values
within the current range. n = number of participants contained between sextiles.
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Interaction between word concreteness and gender. Gender was analysed using z-scores, but
for clarity, the basic labels are used in the legend. n = number of participants contained
between sextiles.
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Appendix E: Results from the Bayesian analyses

This appendix presents extended results from the Bayesian analyses, containing a

prior sensitivity analysis (Schoot et al., 2021). For each study, three tables are presented

that contain the results from the informative prior model (SD = 0.1), the

weakly-informative prior model (SD = 0.2) and the diffuse prior model (SD = 0.3). All

models had an exponentially modified Gaussian (dubbed ‘ex-Gaussian’) distribution with

an identity link function (for background, see main text and Appendix C). The R̂ value is

a convergence diagnostic that should ideally be smaller than 1.01 (Vehtari et al., 2021).

The approach used in this Bayesian analysis is that of estimation (Tendeiro & Kiers,

2019; also see Schmalz et al., 2021). Thus, the estimates were interpreted by considering

the position of their credible intervals in relation to the predicted value of RT (z). That is,

the closer an interval is to a value of 0 on the predicted RT (z), the smaller the effect of

that predictor. For instance, an interval that is symmetrically centred on 0 indicates a very

small effect, whereas—in comparison—an interval that does not include 0 indicates a far

larger effect (for other examples of this approach, see Milek et al., 2018; Pregla et al., 2021;

Rodríguez-Ferreiro et al., 2020).

Study 2.1: Semantic priming

Table E1 presents the results of the informative prior model, Table E2 those of the

weakly-informative prior model, and Table E3 those of the diffuse prior model.
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Table E1
Informative prior model for the semantic priming study.

β SE 95% CrI R̂

(Intercept) 0.00 0.00 [0.00, 0.01] 1.00
Individual differences

Attentional control 0.00 0.00 [0.00, 0.01] 1.00
Vocabulary size a -0.01 0.00 [-0.01, 0.00] 1.00
Gender a 0.00 0.00 [0.00, 0.01] 1.00

Target-word lexical covariates
Word frequency -0.11 0.00 [-0.12, -0.11] 1.00
Number of syllables 0.07 0.00 [0.06, 0.07] 1.00

Prime–target relationship
Word-concreteness difference 0.01 0.00 [0.00, 0.01] 1.00
Language-based similarity b -0.06 0.00 [-0.07, -0.06] 1.00
Visual-strength difference b 0.01 0.00 [0.01, 0.02] 1.00

Task condition
Stimulus onset asynchrony (SOA) b 0.03 0.01 [0.02, 0.04] 1.00

Interactions
Word-concreteness difference ×

Vocabulary size 0.00 0.00 [0.00, 0.00] 1.00

Word-concreteness difference × SOA 0.00 0.00 [0.00, 0.00] 1.00
Word-concreteness difference × Gender 0.00 0.00 [0.00, 0.00] 1.00
Language-based similarity ×

Attentional control 0.00 0.00 [-0.01, 0.00] 1.00

Visual-strength difference ×
Attentional control 0.00 0.00 [0.00, 0.00] 1.00

Language-based similarity ×
Vocabulary size 0.00 0.00 [-0.01, 0.00] 1.00

Visual-strength difference ×
Vocabulary size 0.00 0.00 [0.00, 0.00] 1.00

Language-based similarity × Gender 0.00 0.00 [-0.01, 0.00] 1.00
Visual-strength difference × Gender 0.00 0.00 [0.00, 0.00] 1.00
Language-based similarity × SOA b 0.00 0.00 [0.00, 0.00] 1.00
Visual-strength difference × SOA b 0.00 0.00 [0.00, 0.00] 1.00

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates. Some interactions
are split over two lines, with the second line indented.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Table E2
Weakly-informative prior model for the semantic priming study.

β SE 95% CrI R̂

(Intercept) 0.00 0.00 [0.00, 0.01] 1.00
Individual differences

Attentional control 0.00 0.00 [0.00, 0.01] 1.00
Vocabulary size a -0.01 0.00 [-0.01, 0.00] 1.00
Gender a 0.00 0.00 [0.00, 0.01] 1.00

Target-word lexical covariates
Word frequency -0.11 0.00 [-0.12, -0.11] 1.00
Number of syllables 0.07 0.00 [0.06, 0.07] 1.00

Prime–target relationship
Word-concreteness difference 0.01 0.00 [0.00, 0.01] 1.00
Language-based similarity b -0.06 0.00 [-0.07, -0.06] 1.00
Visual-strength difference b 0.01 0.00 [0.01, 0.01] 1.00

Task condition
Stimulus onset asynchrony (SOA) b 0.03 0.01 [0.02, 0.04] 1.00

Interactions
Word-concreteness difference ×

Vocabulary size 0.00 0.00 [0.00, 0.00] 1.00

Word-concreteness difference × SOA 0.00 0.00 [0.00, 0.00] 1.00
Word-concreteness difference × Gender 0.00 0.00 [0.00, 0.00] 1.00
Language-based similarity ×

Attentional control 0.00 0.00 [-0.01, 0.00] 1.00

Visual-strength difference ×
Attentional control 0.00 0.00 [0.00, 0.00] 1.00

Language-based similarity ×
Vocabulary size 0.00 0.00 [-0.01, 0.00] 1.00

Visual-strength difference ×
Vocabulary size 0.00 0.00 [0.00, 0.00] 1.00

Language-based similarity × Gender 0.00 0.00 [-0.01, 0.00] 1.00
Visual-strength difference × Gender 0.00 0.00 [0.00, 0.00] 1.00
Language-based similarity × SOA b 0.00 0.00 [0.00, 0.00] 1.00
Visual-strength difference × SOA b 0.00 0.00 [0.00, 0.00] 1.00

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates. Some interactions
are split over two lines, with the second line indented.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Table E3
Diffuse prior model for the semantic priming study.

β SE 95% CrI R̂

(Intercept) 0.00 0.00 [0.00, 0.01] 1.00
Individual differences

Attentional control 0.00 0.00 [0.00, 0.01] 1.00
Vocabulary size a -0.01 0.00 [-0.01, 0.00] 1.00
Gender a 0.00 0.00 [0.00, 0.01] 1.00

Target-word lexical covariates
Word frequency -0.11 0.00 [-0.12, -0.11] 1.00
Number of syllables 0.07 0.00 [0.06, 0.07] 1.00

Prime–target relationship
Word-concreteness difference 0.01 0.00 [0.00, 0.01] 1.00
Language-based similarity b -0.06 0.00 [-0.07, -0.06] 1.00
Visual-strength difference b 0.01 0.00 [0.01, 0.01] 1.00

Task condition
Stimulus onset asynchrony (SOA) b 0.03 0.01 [0.02, 0.04] 1.00

Interactions
Word-concreteness difference ×

Vocabulary size 0.00 0.00 [0.00, 0.00] 1.00

Word-concreteness difference × SOA 0.00 0.00 [0.00, 0.00] 1.00
Word-concreteness difference × Gender 0.00 0.00 [0.00, 0.00] 1.00
Language-based similarity ×

Attentional control 0.00 0.00 [-0.01, 0.00] 1.00

Visual-strength difference ×
Attentional control 0.00 0.00 [0.00, 0.00] 1.00

Language-based similarity ×
Vocabulary size 0.00 0.00 [-0.01, 0.00] 1.00

Visual-strength difference ×
Vocabulary size 0.00 0.00 [0.00, 0.00] 1.00

Language-based similarity × Gender 0.00 0.00 [-0.01, 0.00] 1.00
Visual-strength difference × Gender 0.00 0.00 [0.00, 0.00] 1.00
Language-based similarity × SOA b 0.00 0.00 [0.00, 0.00] 1.00
Visual-strength difference × SOA b 0.00 0.00 [0.00, 0.00] 1.00

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates. Some interactions
are split over two lines, with the second line indented.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Figure E1 presents the posterior distribution of each effect in each model. The

frequentist estimates are also shown to facilitate the comparison.
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Figure E1
Estimates from the frequentist analysis (in red) and from the Bayesian analysis (in blue) for
the semantic priming study, in each model. The frequentist means (represented by points)
are flanked by 95% confidence intervals. The Bayesian means (represented by vertical lines)
are flanked by 95% credible intervals in light blue (in some cases, the interval is occluded by
the bar of the mean).
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Study 2.2: Semantic decision

Table E4 presents the results of the informative prior model, Table E5 those of the

weakly-informative prior model, and Table E6 those of the diffuse prior model.

Table E4
Informative prior model for the semantic decision study.

β SE 95% CrI R̂

(Intercept) 0.14 0.42 [0.00, 1.72] 1.31
Individual differences

Information uptake 0.03 0.08 [-0.01, 0.31] 1.31
Vocabulary size a 0.18 0.46 [0.00, 1.44] 1.31
Gender a -0.12 0.39 [-1.56, 0.02] 1.31

Lexicosemantic covariates
Word frequency -0.18 0.31 [-1.34, -0.07] 1.30
Orthographic Levenshtein distance 0.06 0.56 [-1.14, 1.94] 1.41
Word concreteness 0.00 0.26 [-0.08, 1.01] 1.30

Semantic variables
Word co-occurrence b -0.05 0.23 [-0.87, 0.40] 1.41
Visual strength b -0.20 0.49 [-1.52, -0.01] 1.31

Interactions
Word concreteness × Vocabulary size 0.02 0.55 [-1.24, 1.83] 1.42
Word concreteness × Gender 0.07 0.40 [-0.31, 1.58] 1.42
Word co-occurrence × Information uptake -0.06 0.19 [-0.70, 0.02] 1.31
Visual strength × Information uptake -0.15 0.46 [-1.79, 0.02] 1.30
Word co-occurrence × Vocabulary size -0.04 0.55 [-1.92, 1.11] 1.42
Visual strength × Vocabulary size 0.15 0.38 [0.00, 1.27] 1.30
Word co-occurrence × Gender 0.00 0.26 [-0.78, 0.68] 1.41
Visual strength × Gender 0.18 0.49 [-0.01, 1.66] 1.30

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates. Some interactions
are split over two lines, with the second line indented.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Table E5
Weakly-informative prior model for the semantic decision study.

β SE 95% CrI R̂

(Intercept) 0.14 0.42 [0.00, 1.72] 1.31
Individual differences

Information uptake 0.03 0.08 [-0.01, 0.31] 1.31
Vocabulary size a 0.18 0.46 [0.00, 1.44] 1.31
Gender a -0.12 0.39 [-1.56, 0.02] 1.30

Lexicosemantic covariates
Word frequency -0.18 0.31 [-1.34, -0.07] 1.31
Orthographic Levenshtein distance 0.06 0.56 [-1.14, 1.94] 1.40
Word concreteness 0.00 0.26 [-0.08, 1.01] 1.30

Semantic variables
Word co-occurrence b -0.05 0.23 [-0.87, 0.40] 1.41
Visual strength b -0.20 0.49 [-1.52, -0.01] 1.31

Interactions
Word concreteness × Vocabulary size 0.02 0.55 [-1.24, 1.83] 1.41
Word concreteness × Gender 0.07 0.40 [-0.31, 1.58] 1.42
Word co-occurrence × Information uptake -0.06 0.19 [-0.70, 0.02] 1.31
Visual strength × Information uptake -0.15 0.46 [-1.79, 0.02] 1.31
Word co-occurrence × Vocabulary size -0.04 0.55 [-1.92, 1.11] 1.42
Visual strength × Vocabulary size 0.15 0.38 [0.00, 1.28] 1.30
Word co-occurrence × Gender 0.00 0.26 [-0.78, 0.68] 1.41
Visual strength × Gender 0.18 0.49 [-0.01, 1.66] 1.31

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates. Some interactions
are split over two lines, with the second line indented.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Table E6
Diffuse prior model for the semantic decision study.

β SE 95% CrI R̂

(Intercept) 0.14 0.42 [0.00, 1.72] 1.31
Individual differences

Information uptake 0.03 0.08 [-0.01, 0.31] 1.30
Vocabulary size a 0.18 0.46 [0.00, 1.44] 1.30
Gender a -0.12 0.39 [-1.56, 0.02] 1.31

Lexicosemantic covariates
Word frequency -0.18 0.31 [-1.34, -0.07] 1.30
Orthographic Levenshtein distance 0.06 0.56 [-1.14, 1.94] 1.41
Word concreteness 0.00 0.26 [-0.08, 1.01] 1.30

Semantic variables
Word co-occurrence b -0.05 0.23 [-0.87, 0.40] 1.41
Visual strength b -0.20 0.49 [-1.52, -0.01] 1.31

Interactions
Word concreteness × Vocabulary size 0.02 0.55 [-1.24, 1.83] 1.41
Word concreteness × Gender 0.07 0.40 [-0.31, 1.58] 1.41
Word co-occurrence × Information uptake -0.06 0.19 [-0.70, 0.02] 1.31
Visual strength × Information uptake -0.15 0.46 [-1.79, 0.02] 1.30
Word co-occurrence × Vocabulary size -0.04 0.55 [-1.92, 1.11] 1.41
Visual strength × Vocabulary size 0.15 0.38 [0.00, 1.27] 1.30
Word co-occurrence × Gender 0.00 0.26 [-0.78, 0.68] 1.42
Visual strength × Gender 0.18 0.49 [-0.01, 1.66] 1.30

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates. Some interactions
are split over two lines, with the second line indented.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Figure E2 presents the posterior distribution of each effect in each model. The

frequentist estimates are also shown to facilitate the comparison.

Visual strength × Gender

Word co-occurrence × Gender

Visual strength × Vocabulary size

Word co-occurrence × Vocabulary size

Visual strength × Information uptake

Word co-occurrence × Information uptake

Word concreteness × Gender

Word concreteness × Vocabulary size

Visual strength

Word co-occurrence

Gender

Vocabulary size

Information uptake

Word concreteness

Orthographic Levenshtein distance

Word frequency

(Intercept)

-2 0 2

Effect size (β)

Prior SD = 0.1

-2 0 2

Effect size (β)

Prior SD = 0.2

-2 0 2

Effect size (β)

Prior SD = 0.3

Frequentist analysis

(no prior)
Bayesian analysis

Figure E2
Estimates from the frequentist analysis (in red) and from the Bayesian analysis (in blue) for
the semantic decision study, in each model. The frequentist means (represented by points)
are flanked by 95% confidence intervals. The Bayesian means (represented by vertical lines)
are flanked by 95% credible intervals in light blue (in some cases, the interval is occluded by
the bar of the mean).
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Study 2.3: Lexical decision

Table E7 presents the results of the informative prior model, Table E8 those of the

weakly-informative prior model, and Table E9 those of the diffuse prior model.

Table E7
Informative prior model for the lexical decision study.

β SE 95% CrI R̂

(Intercept) 0.00 0.01 [-0.01, 0.01] 1.00
Individual differences

Vocabulary age a 0.00 0.01 [-0.01, 0.02] 1.00
Gender a 0.00 0.01 [-0.01, 0.01] 1.00

Lexicosemantic covariates
Orthographic Levenshtein distance b 0.15 0.01 [0.13, 0.17] 1.00
Word concreteness b -0.03 0.01 [-0.05, -0.02] 1.00

Semantic variables
Word frequency b -0.14 0.01 [-0.16, -0.12] 1.00
Visual strength b -0.01 0.01 [-0.02, 0.01] 1.00

Interactions
Word concreteness × Vocabulary age 0.01 0.01 [-0.01, 0.03] 1.00
Word concreteness × Gender 0.01 0.01 [-0.01, 0.03] 1.00
Word frequency × Vocabulary age 0.00 0.01 [-0.02, 0.02] 1.00
Visual strength × Vocabulary age 0.00 0.01 [-0.02, 0.01] 1.00
Word frequency × Gender -0.01 0.01 [-0.03, 0.01] 1.00
Visual strength × Gender -0.01 0.01 [-0.02, 0.01] 1.00

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Table E8
Weakly-informative prior model for the lexical decision study.

β SE 95% CrI R̂

(Intercept) 0.00 0.01 [-0.01, 0.01] 1.00
Individual differences

Vocabulary age a 0.00 0.01 [-0.01, 0.02] 1.00
Gender a 0.00 0.01 [-0.01, 0.01] 1.00

Lexicosemantic covariates
Orthographic Levenshtein distance b 0.15 0.01 [0.13, 0.17] 1.00
Word concreteness b -0.03 0.01 [-0.05, -0.02] 1.00

Semantic variables
Word frequency b -0.14 0.01 [-0.16, -0.12] 1.00
Visual strength b -0.01 0.01 [-0.02, 0.01] 1.00

Interactions
Word concreteness × Vocabulary age 0.01 0.01 [-0.01, 0.03] 1.00
Word concreteness × Gender 0.01 0.01 [-0.01, 0.03] 1.00
Word frequency × Vocabulary age 0.00 0.01 [-0.02, 0.02] 1.00
Visual strength × Vocabulary age 0.00 0.01 [-0.02, 0.01] 1.00
Word frequency × Gender -0.01 0.01 [-0.03, 0.01] 1.00
Visual strength × Gender -0.01 0.01 [-0.02, 0.01] 1.00

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Table E9
Diffuse prior model for the lexical decision study.

β SE 95% CrI R̂

(Intercept) 0.00 0.01 [-0.01, 0.01] 1.00
Individual differences

Vocabulary age a 0.00 0.01 [-0.01, 0.02] 1.00
Gender a 0.00 0.01 [-0.01, 0.01] 1.00

Lexicosemantic covariates
Orthographic Levenshtein distance b 0.15 0.01 [0.13, 0.17] 1.00
Word concreteness b -0.03 0.01 [-0.05, -0.02] 1.00

Semantic variables
Word frequency b -0.14 0.01 [-0.16, -0.12] 1.00
Visual strength b -0.01 0.01 [-0.02, 0.01] 1.00

Interactions
Word concreteness × Vocabulary age 0.01 0.01 [-0.01, 0.03] 1.00
Word concreteness × Gender 0.01 0.01 [-0.01, 0.03] 1.00
Word frequency × Vocabulary age 0.00 0.01 [-0.02, 0.02] 1.00
Visual strength × Vocabulary age 0.00 0.01 [-0.02, 0.01] 1.00
Word frequency × Gender -0.01 0.01 [-0.03, 0.01] 1.00
Visual strength × Gender -0.01 0.01 [-0.02, 0.01] 1.00

Note. β = Estimate based on z-scored predictors; SE = standard error;
CrI = credible interval. Shaded rows contain covariates.

a By-word random slopes were included for this effect.
b By-participant random slopes were included for this effect.
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Figure E3 presents the posterior distribution of each effect in each model. The

frequentist estimates are also shown to facilitate the comparison.

Visual strength × Gender

Word frequency × Gender

Visual strength × Vocabulary age

Word frequency × Vocabulary age

Word concreteness × Gender

Word concreteness × Vocabulary age

Visual strength

Word frequency

Gender

Vocabulary age

Word concreteness

Orthographic Levenshtein distance

(Intercept)

-0.2 0.0 0.2

Effect size (β)

Prior SD = 0.1

-0.2 0.0 0.2

Effect size (β)

Prior SD = 0.2

-0.2 0.0 0.2

Effect size (β)

Prior SD = 0.3

Frequentist analysis

(no prior)
Bayesian analysis

Figure E3
Estimates from the frequentist analysis (in red) and from the Bayesian analysis (in blue) for
the lexical decision study, in each model. The frequentist means (represented by points) are
flanked by 95% confidence intervals. The Bayesian means (represented by vertical lines) are
flanked by 95% credible intervals in light blue (in some cases, the interval is occluded by the
bar of the mean).
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